Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lysine and arginine biosyntheses mediated by a common carrier protein in Sulfolobus

Abstract

LysW has been identified as a carrier protein in the lysine biosynthetic pathway that is active through the conversion of α-aminoadipate (AAA) to lysine. In this study, we found that the hyperthermophilic archaeon, Sulfolobus acidocaldarius, not only biosynthesizes lysine through LysW-mediated protection of AAA but also uses LysW to protect the amino group of glutamate in arginine biosynthesis. In this archaeon, after LysW modification, AAA and glutamate are converted to lysine and ornithine, respectively, by a single set of enzymes with dual functions. The crystal structure of ArgX, the enzyme responsible for modification and protection of the amino moiety of glutamate with LysW, was determined in complex with LysW. Structural comparison and enzymatic characterization using Sulfolobus LysX, Sulfolobus ArgX and Thermus LysX identify the amino acid motif responsible for substrate discrimination between AAA and glutamate. Phylogenetic analysis reveals that gene duplication events at different stages of evolution led to ArgX and LysX.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relationship between arginine biosynthesis and lysine biosynthesis.
Figure 2: In vivo functions of homologs of lysine biosynthetic genes in S. acidocaldarius.
Figure 3: Analysis of Saci_0751 activity.
Figure 4: Overall structure of StArgX–StLysW complex.
Figure 5: Conformational change of StArgX upon binding StLysW and glutamate and recognition of substrates.
Figure 6: 50% bootstrap consensus tree of 90 lysX (argX)like gene products based on maximum likelihood analysis.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Umbarger, H.E. Amino acid biosynthesis and its regulation. Annu. Rev. Biochem. 47, 532–606 (1978).

    Article  CAS  Google Scholar 

  2. Strassman, M. & Weinhouse, S. Biosynthetic Pathways. III. The biosynthesis of lysine by Torulopsis utilis. J. Am. Chem. Soc. 75, 1680–1684 (1953).

    Article  CAS  Google Scholar 

  3. Vogel, H.J. Distribution of lysine pathway among fungi: evolutionary implications. Am. Nat. 98, 435–446 (1964).

    Article  CAS  Google Scholar 

  4. Kobashi, N., Nishiyama, M. & Tanokura, M. Aspartate kinase-independent lysine synthesis in an extremely thermophilic bacterium, Thermus thermophilus: lysine is synthesized via α-aminoadipic acid, not via diaminopimeric acid. J. Bacteriol. 181, 1713–1718 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Miyazaki, J., Kobashi, N., Nishiyama, M. & Yamane, H. Functional and evolutionary relationship between arginine biosynthesis and prokaryotic lysine biosynthesis through α-aminoadipate. J. Bacteriol. 183, 5067–5073 (2001).

    Article  CAS  Google Scholar 

  6. Nishida, H. et al. A prokaryotic gene cluster involved in synthesis of lysine through the amino adipate pathway: a key to the evolution of amino acid biosynthesis. Genome Res. 9, 1175–1183 (1999).

    Article  CAS  Google Scholar 

  7. Brinkman, A.B., Bell, S.D., Lebbink, R.J. & de Vos, W.M. & van der Oost, J. The Sulfolobus solfataricus Lrp-like protein LysM regulates lysine biosynthesis in response to lysine availability. J. Biol. Chem. 277, 29537–29549 (2002).

    Article  CAS  Google Scholar 

  8. Leisinger, T. & Haas, D. N-Acetylglutamate synthase of Escherichia coli regulation of synthesis and activity by arginine. J. Biol. Chem. 250, 1690–1693 (1975).

    CAS  PubMed  Google Scholar 

  9. Baetens, M., Legrain, C., Boyen, A. & Glansdorff, N. Genes and enzymes of the acetyl cycle of arginine biosynthesis in the extreme thermophilic bacterium Thermus thermophilus HB27. Microbiology 144, 479–492 (1998).

    Article  CAS  Google Scholar 

  10. Martin, P.R. & Mulks, M.H. Sequence analysis and complementation studies of the argJ gene encoding ornithine acetyltransferase from Neisseria gonorrhoeae. J. Bacteriol. 174, 2694–2701 (1992).

    Article  CAS  Google Scholar 

  11. Horie, A. et al. Discovery of proteinaceous N-modification in lysine biosynthesis of Thermus thermophilus. Nat. Chem. Biol. 5, 673–679 (2009).

    Article  CAS  Google Scholar 

  12. Xu, Y., Labedan, B. & Glansdorff, N. Surprising arginine biosynthesis: a reappraisal of the enzymology and evolution of the pathway in microorganisms. Microbiol. Mol. Biol. Rev. 71, 36–47 (2007).

    Article  CAS  Google Scholar 

  13. Wagner, M. et al. Versatile genetic tool box for the Crenarchaeote Sulfolobus acidocaldarius. Front. Microbiol. 3, 214 (2012).

    Article  Google Scholar 

  14. Hara, T., Kato, H., Katsube, Y. & Oda, J. A pseudo-Michaelis quaternary complex in the reverse reaction of a ligase: structure of Escherichia coli B glutathione synthetase complexed with ADP, glutathione, and sulfate at 2.0 Å resolution. Biochemistry 35, 11967–11974 (1996).

    Article  CAS  Google Scholar 

  15. Sakai, H. et al. Crystal structure of a lysine biosynthesis enzyme, LysX, from Thermus thermophilus HB8. J. Mol. Biol. 332, 729–740 (2003).

    Article  CAS  Google Scholar 

  16. Thoden, J.B., Blanchard, C.Z., Holden, H.M. & Waldrop, G.L. Movement of the biotin carboxylase B-domain as a result of ATP binding. J. Biol. Chem. 275, 16183–16190 (2000).

    Article  CAS  Google Scholar 

  17. Jensen, R.A. Enzyme recruitment in evolution of new function. Annu. Rev. Microbiol. 30, 409–425 (1976).

    Article  CAS  Google Scholar 

  18. Fondi, M., Brilli, M., Emiliani, G., Paffetti, D. & Fani, R. The primordial metabolism: an ancestral interconnection between leucine, arginine, and lysine biosynthesis. BMC Evol. Biol. 7 (suppl. 2), S3 (2007).

    Article  Google Scholar 

  19. Tamura, K. et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739 (2011).

    Article  CAS  Google Scholar 

  20. Whelan, S. & Goldman, N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol. Biol. Evol. 18, 691–699 (2001).

    Article  CAS  Google Scholar 

  21. Jez, J.M., Ferrer, J.L., Bowman, M.E., Dixon, R.A. & Noel, J.P. Dissection of malonyl-coenzyme A decarboxylation from polyketide formation in the reaction mechanism of a plant polyketide synthase. Biochemistry 39, 890–902 (2000).

    Article  CAS  Google Scholar 

  22. Yasukawa, T. et al. Increase of solubility of foreign proteins in Escherichia coli by coproduction of the bacterial thioredoxin. J. Biol. Chem. 270, 25328–25331 (1995).

    Article  CAS  Google Scholar 

  23. Ellen, A.F., Albers, S.V. & Driessen, A.J. Comparative study of the extracellular proteome of Sulfolobus species reveals limited secretion. Extremophiles 14, 87–98 (2010).

    Article  CAS  Google Scholar 

  24. Brock, T.D., Brock, K.M., Belly, R.T. & Weiss, R.L. Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch. Mikrobiol. 84, 54–68 (1972).

    Article  CAS  Google Scholar 

  25. Schägger, H. Tricine-SDS-PAGE. Nat. Protoc. 1, 16–22 (2006).

    Article  Google Scholar 

  26. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. in Macromolecular Crystallography, Part A Vol. 276 (eds. Carter C. W. Jr. & R. M. Sweet) 307–326 (Academic Press, New York, 1997).

    Article  Google Scholar 

  27. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  28. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  29. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  30. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  31. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  32. Edgar, R.C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant-in-aid for scientific research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (grant nos. 21380057 and 24228001 to M.N.), Nagase Science and Technology Foundation to M.N., and from the Asahi Glass Foundation to M.N.

Author information

Authors and Affiliations

Authors

Contributions

Research planning and supervision were by T.T., T.K. and M.N.; biochemical experiments were by T.O., K.T., A.H., A.Y. and S. Kosono; phylogenetic analysis was by H.N.; gene knockout and replacement of S. acidocaldarius was by K.L. and S.-V.A.; LC-MS/MS and MALDI-TOF MS was by H.T., R. Mineki, T.F. and C.N.; StArgX was purified by T.O., A.H., A.Y., R. Masui and S. Kuramitsu; Crystallographic analysis was by T.O., A.H. and T.T.; and the manuscript was written by T.O., T.T., H.N., S.-V.A. and M.N.

Corresponding author

Correspondence to Makoto Nishiyama.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results (PDF 7660 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouchi, T., Tomita, T., Horie, A. et al. Lysine and arginine biosyntheses mediated by a common carrier protein in Sulfolobus. Nat Chem Biol 9, 277–283 (2013). https://doi.org/10.1038/nchembio.1200

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1200

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing