Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A conserved asparagine has a structural role in ubiquitin-conjugating enzymes

Abstract

It is widely accepted that ubiquitin-conjugating enzymes contain an active site asparagine that serves as an oxyanion hole, thereby stabilizing a negatively charged transition state intermediate and promoting ubiquitin transfer. Using structural and biochemical approaches to study the role of the conserved asparagine to ubiquitin conjugation by Ubc13–Mms2, we conclude that the importance of this residue stems primarily from its structural role in stabilizing an active site loop.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polyubiquitin chain formation by Ubc13–Mms2 in the presence and absence of Rad5.
Figure 2: Crystal structure of Ubc13N79A.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Pickart, C.M. & Eddins, M.J. Biochim. Biophys. Acta 1695, 55–72 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Kerscher, O., Felberbaum, R. & Hochstrasser, M. Annu. Rev. Cell Dev. Biol. 22, 159–180 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Wu, P.Y. et al. EMBO J. 22, 5241–5250 (2003); erratum 26, 4051 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yunus, A.A. & Lima, C.D. Nat. Struct. Mol. Biol. 13, 491–499 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Wenzel, D.M., Stoll, K.E. & Klevit, R.E. Biochem. J. 433, 31–42 (2010).

    Article  Google Scholar 

  6. Sakata, E. et al. Structure 18, 138–147 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Kamadurai, H.B. et al. Mol. Cell 36, 1095–1102 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Plechanovová, A., Jaffray, E.G., Tatham, M.H., Naismith, J.H. & Hay, R.T. Nature 489, 115–120 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pruneda, J.N. et al. Mol. Cell 47, 933–942 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dou, H., Buetow, L., Sibbet, G.J., Cameron, K. & Huang, D.T. Nat. Struct. Mol. Biol. 19, 876–883 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Bernier-Villamor, V., Sampson, D.A., Matunis, M.J. & Lima, C.D. Cell 108, 345–356 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Eddins, M.J., Carlile, C.M., Gomez, K.M., Pickart, C.M. & Wolberger, C. Nat. Struct. Mol. Biol. 13, 915–920 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. VanDemark, A.P., Hofmann, R.M., Tsui, C., Pickart, C.M. & Wolberger, C. Cell 105, 711–720 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Reverter, D. & Lima, C.D. Nature 435, 687–692 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hofmann, R.M. & Pickart, C.M. Cell 96, 645–653 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Carlile, C.M., Pickart, C.M., Matunis, M.J. & Cohen, R.E. J. Biol. Chem. 284, 29326–29334 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saha, A., Lewis, S., Kleiger, G., Kuhlman, B. & Deshaies, R.J. Mol. Cell 42, 75–83 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wilkinson, K.D. & Rose, I.A. J. Biol. Chem. 256, 9890–9894 (1981).

    CAS  PubMed  Google Scholar 

  19. Wilkinson, K.D. & Rose, I.A. J. Biol. Chem. 254, 12567–12572 (1979).

    CAS  PubMed  Google Scholar 

  20. Ozkan, E., Yu, H. & Deisenhofer, J. Proc. Natl. Acad. Sci. USA 102, 18890–18895 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bruice, T.C. & Pandit, U.K. Proc. Natl. Acad. Sci. USA 46, 402–404 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jencks, W.P. Catalysis in Chemistry and Enzymology (Dover, New York, 1987).

  23. Liu, H. & Naismith, J.H. BMC Biotechnol. 8, 91 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Berndsen, C.E. & Wolberger, C. Anal. Biochem. 418, 102–110 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pickart, C.M. & Raasi, S. Methods Enzymol. 399, 21–36 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Gangavarapu, V. et al. Mol. Cell Biol. 26, 7783–7790 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McCoy, A.J. et al. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Murshudov, G.N. et al. Acta Crystallogr. D Biol. Crystallogr. 67, 355–367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zwart, P. & Afonine, P. Methods Mol. Biol. 426, 419–435 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Afonine, P.V. et al. Acta Crystallogr. D Biol. Crystallogr. 68, 352–367 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Read, R.J. et al. Structure 19, 1395–1412 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen, V.B. et al. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    CAS  PubMed  Google Scholar 

  34. Davis, I.W., Murray, L.W., Richardson, J.S. & Richardson, D.C. Nucleic Acids Res. 32, W615–W619 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Hurley (National Institute of Diabetes and Digestive and Kidney Diseases) for the Ubc13–Mms2 coexpression plasmid and X. Zhang (Johns Hopkins University) for human E1 protein. We also thank J. Stivers, A. Hengge and L. Spyracopoulos for helpful discussions. This work was supported in part by a grant from the US National Science Foundation (MCB-0920082). C.E.B. was supported in part by a Ruth Kirchstein Fellowship from the National Institute of General Medical Science (F32GM089037). General Medical Sciences and Cancer Institutes Structural Biology Facility at the Advanced Photon Source has been funded in whole or in part with Federal funds from the National Cancer Institute (Y1-CO-1020) and the National Institute of General Medical Sciences (Y1-GM-1104). Use of the Advanced Photon Source was supported by the US Department of Energy, Basic Energy Sciences, Office of Science, under contract no. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Contributions

C.E.B., R.W. and C.W. planned experiments; C.E.B., R.W., A.E.R. and I.W.Y. performed biochemical analysis of ubiquitin conjugation; C.E.B. and R.W. crystallized and determined the structure of Ubc13N79A; C.E.B. and C.W. wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Cynthia Wolberger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results (PDF 982 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berndsen, C., Wiener, R., Yu, I. et al. A conserved asparagine has a structural role in ubiquitin-conjugating enzymes. Nat Chem Biol 9, 154–156 (2013). https://doi.org/10.1038/nchembio.1159

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1159

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing