Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Paralog-selective Hsp90 inhibitors define tumor-specific regulation of HER2

Abstract

Although the Hsp90 chaperone family, comprised in humans of four paralogs, Hsp90α, Hsp90β, Grp94 and Trap-1, has important roles in malignancy, the contribution of each paralog to the cancer phenotype is poorly understood. This is in large part because reagents to study paralog-specific functions in cancer cells have been unavailable. Here we combine compound library screening with structural and computational analyses to identify purine-based chemical tools that are specific for Hsp90 paralogs. We show that Grp94 selectivity is due to the insertion of these compounds into a new allosteric pocket. We use these tools to demonstrate that cancer cells use individual Hsp90 paralogs to regulate a client protein in a tumor-specific manner and in response to proteome alterations. Finally, we provide new mechanistic evidence explaining why selective Grp94 inhibition is particularly efficacious in certain breast cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Library screening identifies paralog specific chemical spaces.
Figure 2: Structural and computational analyses define differences in Hsp90 paralog pockets and paralog-selective chemical spaces.
Figure 3: HER2 is sensitive to Hsp90 paralog inhibition in a tumor-specific manner.
Figure 4: Grp94 and Hsp90α and Hsp90β regulate distinct HER2 functions in HER2-overexpressing cancer cells.
Figure 5: Schematic representation summarizing the tumor-specific regulation of HER2 by the Hsp90 paralogs.
Figure 6: Grp94 inhibition alone is sufficient to induce apoptosis in and reduce the viability of HER2 overexpressing breast cancer cells.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

Swiss-Prot

References

  1. Workman, P., Burrows, F., Neckers, L. & Rosen, N. Drugging the cancer chaperone Hsp90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann. NY Acad. Sci. 1113, 202–216 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Sreedhar, A.S., Kalmar, E., Csermely, P. & Shen, Y.F. Hsp90 isoforms: functions, expression and clinical importance. FEBS Lett. 562, 11–15 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Johnson, J.L. Evolution and function of diverse Hsp90 homologs and cochaperone proteins. Biochim. Biophys. Acta 1823, 607–613 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Chène, P. ATPases as drug targets: learning from their structure. Nat. Rev. Drug Discov. 1, 665–673 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Pearl, L.H., Prodromou, C. & Workman, P. The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem. J. 410, 439–453 (2008).

    CAS  PubMed  Google Scholar 

  6. Jhaveri, K., Taldone, T., Modi, S. & Chiosis, G. Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Biochim. Biophys. Acta 1823, 742–755 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Marzec, M., Eletto, D. & Argon, Y. GRP94: an HSP90-like protein specialized for protein folding and quality control in the endoplasmic reticulum. Biochim. Biophys. Acta 1823, 774–787 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Chen, B., Piel, W.H., Gui, L., Bruford, E. & Monteiro, A. The HSP90 family of genes in the human genome: insights into their divergence and evolution. Genomics 86, 627–637 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Schulte, T.W. et al. Interaction of radicicol with members of the heat shock protein 90 family of molecular chaperones. Mol. Endocrinol. 13, 1435–1448 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Taldone, T. et al. Experimental and structural testing module to analyze paralog-specificity and affinity in the Hsp90 inhibitors series. J. Med. Chem. http://dx.doi.org/10.1021/jm400619b (2013).

  11. Immormino, R.M., Kang, Y., Chiosis, G. & Gewirth, D.T. Structural and quantum chemical studies of 8-aryl-sulfanyl adenine class Hsp90 inhibitors. J. Med. Chem. 49, 4953–4960 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Soldano, K.L., Jivan, A., Nicchitta, C.V. & Gewirth, D.T. Structure of the N-terminal domain of GRP94: basis for ligand specificity and regulation. J. Biol. Chem. 278, 48330–48338 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Immormino, R.M. et al. Different poses for ligand and chaperone in inhibitor-bound Hsp90 and GRP94: implications for paralog-specific drug design. J. Mol. Biol. 388, 1033–1042 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dollins, D.E., Immormino, R.M. & Gewirth, D.T. Structure of unliganded GRP94, the endoplasmic reticulum Hsp90. Basis for nucleotide-induced conformational change. J. Biol. Chem. 280, 30438–30447 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Richter, K., Reinstein, J. & Buchner, J. A Grp on the Hsp90 mechanism. Mol. Cell 28, 177–179 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Ali, M.M. et al. Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature 440, 1013–1017 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Leskovar, A., Wegele, H., Werbeck, N.D., Buchner, J. & Reinstein, J. The ATPase cycle of the mitochondrial Hsp90 analog Trap1. J. Biol. Chem. 283, 11677–11688 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Chiosis, G., Kang, Y. & Sun, W. Discovery and development of purine-scaffold Hsp90 inhibitors. Expert. Opin. Drug Discov. 3, 99–114 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Chiosis, G. et al. A small molecule designed to bind to the adenine nucleotide pocket of Hsp90 causes Her2 degradation and the growth arrest and differentiation of breast cancer cells. Chem. Biol. 8, 289–299 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Kim, J. et al. Development of a fluorescence polarization assay for the molecular chaperone Hsp90. J. Biomol. Screen. 9, 375–381 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Wright, L. et al. Structure-activity relationships in purine-based inhibitor binding to HSP90 isoforms. Chem. Biol. 11, 775–785 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Ostrovsky, O., Ahmed, N.T. & Argon, Y. The chaperone activity of GRP94 toward insulin-like growth factor II is necessary for the stress response to serum deprivation. Mol. Biol. Cell 20, 1855–1864 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang, Y. et al. Heat shock protein gp96 is a master chaperone for toll-like receptors and is important in the innate function of macrophages. Immunity 26, 215–226 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moulick, K. et al. Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90. Nat. Chem. Biol. 7, 818–826 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yarden, Y. & Sliwkowski, M.X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2, 127–137 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Mimnaugh, E.G., Chavany, C. & Neckers, L. Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J. Biol. Chem. 271, 22796–22801 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Xu, W. et al. Sensitivity of mature Erbb2 to geldanamycin is conferred by its kinase domain and is mediated by the chaperone protein Hsp90. J. Biol. Chem. 276, 3702–3708 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Xu, W., Mimnaugh, E.G., Kim, J.S., Trepel, J.B. & Neckers, L.M. Hsp90, not Grp94, regulates the intracellular trafficking and stability of nascent ErbB2. Cell Stress Chaperones 7, 91–96 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chavany, C. et al. p185erbB2 binds to GRP94 in vivo. Dissociation of the p185erbB2/GRP94 heterocomplex by benzoquinone ansamycins precedes depletion of p185erbB2. J. Biol. Chem. 271, 4974–4977 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Kim, T.E. & Murren, J.R. Lapatinib ditosylate GlaxoSmithKline. IDrugs 6, 886–893 (2003).

    CAS  PubMed  Google Scholar 

  31. Zhang, L., Bewick, M. & Lafrenie, R.M. EGFR and ErbB2 differentially regulate Raf-1 translocation and activation. Lab. Invest. 82, 71–78 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Xu, W. et al. Chaperone-dependent E3 ubiquitin ligase CHIP mediates a degradative pathway for c-ErbB2/Neu. Proc. Natl. Acad. Sci. USA 99, 12847–12852 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zheng, H., Dai, J., Stoilova, D. & Li, Z. Cell surface targeting of heat shock protein gp96 induces dendritic cell maturation and antitumor immunity. J. Immunol. 167, 6731–6735 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Ni, M. & Lee, A.S. ER chaperones in mammalian development and human diseases. FEBS Lett. 581, 3641–3651 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Eletto, D., Dersh, D. & Argon, Y. GRP94 in ER quality control and stress responses. Semin. Cell Dev. Biol. 21, 479–485 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Duerfeldt, A.S. et al. Development of a Grp94 inhibitor. J. Am. Chem. Soc. 134, 9796–9804 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cabanes, D. et al. Gp96 is a receptor for a novel Listeria monocytogenes virulence factor, Vip, a surface protein. EMBO J. 24, 2827–2838 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Na, X., Kim, H., Moyer, M.P., Pothoulakis, C. & LaMont, J.T. gp96 is a human colonocyte plasma membrane binding protein for Clostridium difficile toxin A. Infect. Immun. 76, 2862–2871 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ostrovsky, O., Makarewich, C.A., Snapp, E.L. & Argon, Y. An essential role for ATP binding and hydrolysis in the chaperone activity of GRP94 in cells. Proc. Natl. Acad. Sci. USA 106, 11600–11605 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Modi, S. et al. HSP90 inhibition is effective in breast cancer: a phase II trial of tanespimycin (17-AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. Clin. Cancer Res. 17, 5132–5139 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Whitesell, L., Bagatell, R. & Falsey, R. The stress response: implications for the clinical development of hsp90 inhibitors. Curr. Cancer Drug Targets 3, 349–358 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Jorgensen, W.L., Maxwell, D.S. & Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

    Article  CAS  Google Scholar 

  43. Friesner, R.A. et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 47, 1739–1749 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Halgren, T.A. et al. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 47, 1750–1759 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Friesner, R.A. et al. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 49, 6177–6196 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Halgren, T.A. Identifying and characterizing binding sites and assessing druggability. J. Chem. Inf. Model. 49, 377–389 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Chiosis, G., Lucas, B., Shtil, A., Huezo, H. & Rosen, N. Development of a purine-scaffold novel class of Hsp90 binders that inhibit the proliferation of cancer cells and induce the degradation of Her2 tyrosine kinase. Bioorg. Med. Chem. 10, 3555–3564 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Taldone, T. et al. Design, synthesis, and evaluation of small molecule Hsp90 probes. Bioorg. Med. Chem. 19, 2603–2614 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Llauger, L. et al. Evaluation of 8-arylsulfanyl, 8-arylsulfoxyl, and 8-arylsulfonyl adenine derivatives as inhibitors of the heat shock protein 90. J. Med. Chem. 48, 2892–2905 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. He, H. et al. Identification of potent water soluble purine-scaffold inhibitors of the heat shock protein 90. J. Med. Chem. 49, 381–390 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Moulick, K. et al. Synthesis of a red-shifted fluorescence polarization probe for Hsp90. Bioorg. Med. Chem. Lett. 16, 4515–4518 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Rodina, A. et al. Selective compounds define Hsp90 as a major inhibitor of apoptosis in small-cell lung cancer. Nat. Chem. Biol. 3, 498–507 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Caldas-Lopes, E. et al. Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. Proc. Natl. Acad. Sci. USA 106, 8368–8373 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wanderling, S. et al. GRP94 is essential for mesoderm induction and muscle development because it regulates insulin-like growth factor secretion. Mol. Biol. Cell 18, 3764–3775 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sokolowska, I. et al. Proteomic analysis of plasma membranes isolated from undifferentiated and differentiated HepaRG cells. Proteome Sci. 10, 47 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    PubMed  Google Scholar 

  58. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    CAS  PubMed  Google Scholar 

  59. Painter, J. & Merritt, E.A. Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallogr. D Biol. Crystallogr. 62, 439–450 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Painter, J. & Merritt, E.A. TLSMD web server for the generation of multi-group TLS models. J. Appl. Crystallogr. 39, 109–111 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G.C. is funded by the Breast Cancer Research Fund, R01 CA172546-01A1, U01 AG032969-01A1, R21 AI090501, R21 CA158609-01 and R01 CA155226-01. P.Y. is supported by the Translational and Integrative Medicine Research Fund of Memorial Sloan-Kettering Cancer Center. P.D.P. and R.A.S. are supported by funds and resources from St. John's University. D.T.G. is funded by R01 CA095130. We thank Y. Argon (Children's Hospital of Philadelphia) and C. Leifer (Cornell University College of Veterinary Medicine) for reagents.

Author information

Authors and Affiliations

Authors

Contributions

P.D.P., P.Y., H.J.P. and C.Y. performed the chemistry and chemical biology experiments, and T.T. and W.S. provided reagents. P.M.S., N.S.Q. and D.T.G. carried out the crystal structure determination and analysis. All of the authors participated in the design and analysis of various experiments, and G.C., D.T.G. and P.D.P. wrote the paper.

Corresponding authors

Correspondence to Daniel T Gewirth or Gabriela Chiosis.

Ethics declarations

Competing interests

Memorial Sloan-Kettering Cancer Center holds the intellectual rights to the purine-scaffold Hsp90 inhibitors. Samus Therapeutics, of which G.C. has partial ownership, has licensed PU-H71.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1-2, Supplementary Figures 1-9 and Supplementary Notes 1-2. (PDF 23647 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, P., Yan, P., Seidler, P. et al. Paralog-selective Hsp90 inhibitors define tumor-specific regulation of HER2. Nat Chem Biol 9, 677–684 (2013). https://doi.org/10.1038/nchembio.1335

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1335

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer