Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The siderophore yersiniabactin binds copper to protect pathogens during infection

Abstract

Bacterial pathogens secrete chemically diverse iron chelators called siderophores, which may exert additional distinctive functions in vivo. Among these, uropathogenic Escherichia coli often coexpress the virulence-associated siderophore yersiniabactin (Ybt) with catecholate siderophores. Here we used a new MS screening approach to reveal that Ybt is also a physiologically favorable Cu(II) ligand. Direct MS detection of the resulting Cu(II)–Ybt complex in mice and humans with E. coli urinary tract infections demonstrates copper binding to be a physiologically relevant in vivo interaction during infection. Ybt expression corresponded to higher copper resistance among human urinary tract isolates, suggesting a protective role for this interaction. Chemical and genetic characterization showed that Ybt helps bacteria resist copper toxicity by sequestering host-derived Cu(II) and preventing its catechol-mediated reduction to Cu(I). Together, these studies reveal a new virulence-associated function for Ybt that is distinct from iron binding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A Ybt neutral loss screen reveals formation of a new Cu(II)–Ybt complex in human urine.
Figure 2: Cupric Ybt is produced in cystitis patients infected with Ybt-producing strains.
Figure 3: Ybt promotes E. coli growth in copper-toxic conditions.
Figure 4: Catecholate siderophores and Ybt exert opposing effects on copper cytotoxicity.

Similar content being viewed by others

References

  1. Miethke, M. & Marahiel, M.A. Siderophore-based iron acquisition and pathogen control. Microbiol. Mol. Biol. Rev. 71, 413–451 (2007).

    Article  CAS  Google Scholar 

  2. Devireddy, L.R., Hart, D.O., Goetz, D.H. & Green, M.R. A mammalian siderophore synthesized by an enzyme with a bacterial homolog involved in enterobactin production. Cell 141, 1006–1017 (2010).

    Article  CAS  Google Scholar 

  3. Kim, H.J., Galeva, N., Larive, C.K., Alterman, M. & Graham, D.W. Purification and physical-chemical properties of methanobactin: a chalkophore from Methylosinus trichosporium OB3b. Biochemistry 44, 5140–5148 (2005).

    Article  CAS  Google Scholar 

  4. Kim, H.J. et al. Methanobactin, a copper-acquisition compound from methane-oxidizing bacteria. Science 305, 1612–1615 (2004).

    Article  CAS  Google Scholar 

  5. Clarke, S.E., Stuart, J. & Sanders-Loehr, J. Induction of siderophore activity in Anabaena spp. and its moderation of copper toxicity. Appl. Environ. Microbiol. 53, 917–922 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Behling, L.A. et al. NMR, mass spectrometry and chemical evidence reveal a different chemical structure for methanobactin that contains oxazolone rings. J. Am. Chem. Soc. 130, 12604–12605 (2008).

    Article  CAS  Google Scholar 

  7. Braud, A., Hannauer, M., Mislin, G.L. & Schalk, I.J. The Pseudomonas aeruginosa pyochelin-iron uptake pathway and its metal specificity. J. Bacteriol. 191, 3517–3525 (2009).

    Article  CAS  Google Scholar 

  8. Visca, P. et al. Metal regulation of siderophore synthesis in Pseudomonas aeruginosa and functional effects of siderophore-metal complexes. Appl. Environ. Microbiol. 58, 2886–2893 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kurz, T., Gustafsson, B. & Brunk, U.T. Intralysosomal iron chelation protects against oxidative stress–induced cellular damage. FEBS J. 273, 3106–3117 (2006).

    Article  CAS  Google Scholar 

  10. Luo, M., Fadeev, E.A. & Groves, J.T. Mycobactin-mediated iron acquisition within macrophages. Nat. Chem. Biol. 1, 149–153 (2005).

    Article  CAS  Google Scholar 

  11. Paauw, A., Leverstein-van Hall, M.A., van Kessel, K.P., Verhoef, J. & Fluit, A.C. Yersiniabactin reduces the respiratory oxidative stress response of innate immune cells. PLoS ONE 4, e8240 (2009).

    Article  Google Scholar 

  12. Seifert, M. et al. Effects of the Aspergillus fumigatus siderophore systems on the regulation of macrophage immune effector pathways and iron homeostasis. Immunobiology 213, 767–778 (2008).

    Article  CAS  Google Scholar 

  13. Thiele, D.J. & Gitlin, J.D. Assembling the pieces. Nat. Chem. Biol. 4, 145–147 (2008).

    Article  CAS  Google Scholar 

  14. Prentice, A.M., Ghattas, H. & Cox, S.E. Host-pathogen interactions: can micronutrients tip the balance? J. Nutr. 137, 1334–1337 (2007).

    Article  CAS  Google Scholar 

  15. Brickman, T.J., Cummings, C.A., Liew, S.Y., Relman, D.A. & Armstrong, S.K. Transcriptional profiling of the iron starvation response in Bordetella pertussis provides new insights into siderophore utilization and virulence gene expression. J. Bacteriol. 193, 4798–4812 (2011).

    Article  CAS  Google Scholar 

  16. Chen, S.L. et al. Identification of genes subject to positive selection in uropathogenic strains of Escherichia coli: a comparative genomics approach. Proc. Natl. Acad. Sci. USA 103, 5977–5982 (2006).

    Article  CAS  Google Scholar 

  17. Henderson, J.P. et al. Quantitative metabolomics reveals an epigenetic blueprint for iron acquisition in uropathogenic Escherichia coli. PLoS Pathog. 5, e1000305 (2009).

    Article  Google Scholar 

  18. Reigstad, C.S., Hultgren, S.J. & Gordon, J.I. Functional genomic studies of uropathogenic Escherichia coli and host urothelial cells when intracellular bacterial communities are assembled. J. Biol. Chem. 282, 21259–21267 (2007).

    Article  CAS  Google Scholar 

  19. Snyder, J.A. et al. Transcriptome of uropathogenic Escherichia coli during urinary tract infection. Infect. Immun. 72, 6373–6381 (2004).

    Article  CAS  Google Scholar 

  20. Hammer, N.D. & Skaar, E.P. Molecular mechanisms of Staphylococcus aureus iron acquisition. Annu. Rev. Microbiol. 65, 129–147 (2011).

    Article  CAS  Google Scholar 

  21. Bachman, M.A. et al. Klebsiella pneumoniae yersiniabactin promotes respiratory tract infection through evasion of lipocalin 2. Infect. Immun. 79, 3309–3316 (2011).

    Article  CAS  Google Scholar 

  22. Mokracka, J., Koczura, R. & Kaznowski, A. Yersiniabactin and other siderophores produced by clinical isolates of Enterobacter spp. and Citrobacter spp. FEMS Immunol. Med. Microbiol. 40, 51–55 (2004).

    Article  CAS  Google Scholar 

  23. Mabbett, A.N. et al. Virulence properties of asymptomatic bacteriuria Escherichia coli. Int. J. Med. Microbiol. 299, 53–63 (2009).

    Article  CAS  Google Scholar 

  24. CRC Press. The CRC Handbook of Chemistry and Physics 71st edn. (ed. Lide, D.R.) Ch. 11, 44–45 (CRC, 1991).

  25. Macomber, L. & Imlay, J.A. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc. Natl. Acad. Sci. USA 106, 8344–8349 (2009).

    Article  CAS  Google Scholar 

  26. Clark, H.W. & Gage, S.D. On the bactericidal action of copper. Public Health Pap. Rep. 31, 175–204 (1905).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Grass, G. et al. Linkage between catecholate siderophores and the multicopper oxidase CueO in Escherichia coli. J. Bacteriol. 186, 5826–5833 (2004).

    Article  CAS  Google Scholar 

  28. Beswick, P.H. et al. Copper toxicity: evidence for the conversion of cupric to cuprous copper in vivo under anaerobic conditions. Chem. Biol. Interact. 14, 347–356 (1976).

    Article  CAS  Google Scholar 

  29. Arceneaux, J.E., Boutwell, M.E. & Byers, B.R. Enhancement of copper toxicity by siderophores in Bacillus megaterium. Antimicrob. Agents Chemother. 25, 650–652 (1984).

    Article  CAS  Google Scholar 

  30. McKnight, D.M. & Morel, F.M.M. Copper complexation by siderophores from filamentous blue green algae. Limnol. Oceanogr. 25, 62–71 (1980).

    Article  CAS  Google Scholar 

  31. Hakemian, A.S. & Rosenzweig, A.C. The biochemistry of methane oxidation. Annu. Rev. Biochem. 76, 223–241 (2007).

    Article  CAS  Google Scholar 

  32. Balasubramanian, R. & Rosenzweig, A.C. Copper methanobactin: a molecule whose time has come. Curr. Opin. Chem. Biol. 12, 245–249 (2008).

    Article  CAS  Google Scholar 

  33. Baker, J., Sengupta, M., Jayaswal, R.K. & Morrissey, J.A. The Staphylococcus aureus CsoR regulates both chromosomal and plasmid-encoded copper resistance mechanisms. Environ. Microbiol. 13, 2495–2507 (2011).

    Article  CAS  Google Scholar 

  34. Nandakumar, R., Espirito Santo, C., Madayiputhiya, N. & Grass, G. Quantitative proteomic profiling of the Escherichia coli response to metallic copper surfaces. Biometals 24, 429–444 (2011).

    Article  CAS  Google Scholar 

  35. Shafeeq, S. et al. The cop operon is required for copper homeostasis and contributes to virulence in Streptococcus pneumoniae. Mol. Microbiol. 81, 1255–1270 (2011).

    Article  CAS  Google Scholar 

  36. Wolschendorf, F. et al. Copper resistance is essential for virulence of Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 108, 1621–1626 (2011).

    Article  CAS  Google Scholar 

  37. Leary, S.C. & Winge, D.R. The Janus face of copper: its expanding roles in biology and the pathophysiology of disease. Meeting on copper and related metals in biology. EMBO Rep. 8, 224–227 (2007).

    Article  CAS  Google Scholar 

  38. White, C., Lee, J., Kambe, T., Fritsche, K. & Petris, M.J. A role for the ATP7A copper-transporting ATPase in macrophage bactericidal activity. J. Biol. Chem. 284, 33949–33956 (2009).

    Article  CAS  Google Scholar 

  39. Caza, M., Lepine, F. & Dozois, C.M. Secretion, but not overall synthesis, of catecholate siderophores contributes to virulence of extraintestinal pathogenic Escherichia coli. Mol. Microbiol. 80, 266–282 (2011).

    Article  CAS  Google Scholar 

  40. Caza, M., Lepine, F., Milot, S. & Dozois, C.M. Specific roles of the iroBCDEN genes in virulence of an avian pathogenic Escherichia coli O78 strain and in production of salmochelins. Infect. Immun. 76, 3539–3549 (2008).

    Article  CAS  Google Scholar 

  41. Crouch, M.L., Castor, M., Karlinsey, J.E., Kalhorn, T. & Fang, F.C. Biosynthesis and IroC-dependent export of the siderophore salmochelin are essential for virulence of Salmonella enterica serovar Typhimurium. Mol. Microbiol. 67, 971–983 (2008).

    Article  CAS  Google Scholar 

  42. Hellman, N.E. et al. Mechanisms of copper incorporation into human ceruloplasmin. J. Biol. Chem. 277, 46632–46638 (2002).

    Article  CAS  Google Scholar 

  43. Kenney, G.E. & Rosenzweig, A.C. Chemistry and biology of the copper chelator methanobactin. ACS Chem. Biol. 7, 260–268 (2012).

    Article  CAS  Google Scholar 

  44. Fischbach, M.A. & Walsh, C.T. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem. Rev. 106, 3468–3496 (2006).

    Article  CAS  Google Scholar 

  45. Mulvey, M.A., Schilling, J.D. & Hultgren, S.J. Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect. Immun. 69, 4572–4579 (2001).

    Article  CAS  Google Scholar 

  46. Nataro, J.P., Bopp, C.A., Fields, P.I., Kaper, J.B. & Strockbine, N.A. in Manual of Clinical Microbiology 10th edn. (ed. Versalovic, J.) Ch. 35 (ASM Press, 2011).

  47. Hung, C.S., Dodson, K.W. & Hultgren, S.J. A murine model of urinary tract infection. Nat. Protoc. 4, 1230–1243 (2009).

    Article  CAS  Google Scholar 

  48. Ogawa, S., Ichiki, R., Abo, M. & Yoshimura, E. Revision of analytical conditions for determining ligand molecules specific to soft metal ions using dequenching of copper(I)-bathocuproine disulfonate as a detection system. Anal. Chem. 81, 9199–9200 (2009).

    Article  CAS  Google Scholar 

  49. Wagner, P. & Heinecke, J.W. Copper ions promote peroxidation of low density lipoprotein lipid by binding to histidine residues of apolipoprotein B100, but they are reduced at other sites on LDL. Arterioscler. Thromb. Vasc. Biol. 17, 3338–3346 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank M. Gross, H. Rohrs and Y. Zhang for high-resolution MS analysis and J. Pinker for assistance with small-molecule purification. We are grateful to S. Hultgren, G. Marshall and B. Ford for helpful discussions. J.P.H. holds a Career Award for Medical Scientists from the Burroughs-Wellcome Fund. We additionally acknowledge US National Institutes of Health grants K12 HD001459-09, AI 07172-24, P30 HL101263-01, P50 DK64540, U01 DK082315 and UL1 RR024992. MS was supported by P41-RR00954, 8-P41 GM103422-35 (NCRR), P60-DK20579 and P30-DK56341.

Author information

Authors and Affiliations

Authors

Contributions

K.S.C. and J.P.H. conceived and designed the experiments. K.S.C., C.S.H. and J.R.C. performed the experiments. A.E.S. collected human specimens. K.S.C., C.S.H. and J.P.H. analyzed the data. K.S.C. and J.P.H. wrote the paper.

Corresponding author

Correspondence to Jeffrey P Henderson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 6798 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaturvedi, K., Hung, C., Crowley, J. et al. The siderophore yersiniabactin binds copper to protect pathogens during infection. Nat Chem Biol 8, 731–736 (2012). https://doi.org/10.1038/nchembio.1020

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1020

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing