Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Domain organization differences explain Bcr-Abl's preference for CrkL over CrkII

Abstract

CrkL is a key signaling protein that mediates the leukemogenic activity of Bcr-Abl. CrkL is thought to adopt a structure that is similar to that of its CrkII homolog. The two proteins share high sequence identity and indistinguishable ligand binding preferences, yet they have distinct physiological roles. Here we show that the structures of CrkL and phosphorylated CrkL are markedly different than the corresponding structures of CrkII. As a result, the binding activities of the Src homology 2 and Src homology 3 domains in the two proteins are regulated in a distinct manner and to a different extent. The different structural architecture of CrkL and CrkII may account for their distinct functional roles. The data show that CrkL forms a constitutive complex with Abl, thus explaining the strong preference of Bcr-Abl for CrkL. The results also highlight how the structural organization of the modular domains in adaptor proteins can control signaling outcome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural and dynamic properties of CrkL.
Figure 2: Binding of pTyr- and PPII-peptide ligands to CrkL and CrkII.
Figure 3: Structural and dynamic properties of pCrkL.
Figure 4: Effect of Tyr207 phosphorylation on CrkL folding and its association with Abl kinase.
Figure 5: CrkL versus CrkII in integrin signaling.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Birge, R.B., Kalodimos, C., Inagaki, F. & Tanaka, S. Crk and CrkL adaptor proteins: networks for physiological and pathological signaling. Cell Commun. Signal. 7, 13 (2009).

    Article  Google Scholar 

  2. Isakov, N. A new twist to adaptor proteins contributes to regulation of lymphocyte cell signaling. Trends Immunol. 29, 388–396 (2008).

    Article  CAS  Google Scholar 

  3. Cabodi, S., del Pilar Camacho-Leal, M., Di Stefano, P. & Defilippi, P. Integrin signalling adaptors: not only figurants in the cancer story. Nat. Rev. Cancer 10, 858–870 (2010).

    Article  CAS  Google Scholar 

  4. Kim, Y.H. et al. Genomic and functional analysis identifies CRKL as an oncogene amplified in lung cancer. Oncogene 29, 1421–1430 (2010).

    Article  CAS  Google Scholar 

  5. Mintz, P.J. et al. An unrecognized extracellular function for an intracellular adapter protein released from the cytoplasm into the tumor microenvironment. Proc. Natl. Acad. Sci. USA 106, 2182–2187 (2009).

    Article  CAS  Google Scholar 

  6. Wang, H. et al. The role of Crk/Dock180/Rac1 pathway in the malignant behavior of human ovarian cancer cell SKOV3. Tumour Biol. 31, 59–67 (2010).

    Article  Google Scholar 

  7. Feng, R. et al. miR-126 functions as a tumour suppressor in human gastric cancer. Cancer Lett. 298, 50–63 (2010).

    Article  CAS  Google Scholar 

  8. Noren, N.K., Foos, G., Hauser, C.A. & Pasquale, E.B. The EphB4 receptor suppresses breast cancer cell tumorigenicity through an Abl-Crk pathway. Nat. Cell Biol. 8, 815–825 (2006).

    Article  CAS  Google Scholar 

  9. Matsuda, M. et al. Two species of human CRK cDNA encode proteins with distinct biological activities. Mol. Cell. Biol. 12, 3482–3489 (1992).

    Article  CAS  Google Scholar 

  10. ten Hoeve, J., Morris, C., Heisterkamp, N. & Groffen, J. Isolation and chromosomal localization of CRKL, a human crk-like gene. Oncogene 8, 2469–2474 (1993).

    CAS  PubMed  Google Scholar 

  11. Feller, S.M., Knudsen, B. & Hanafusa, H. c-Abl kinase regulates the protein binding activity of c-Crk. EMBO J. 13, 2341–2351 (1994).

    Article  CAS  Google Scholar 

  12. de Jong, R., ten Hoeve, J., Heisterkamp, N. & Groffen, J. Tyrosine 207 in CRKL is the BCR/ABL phosphorylation site. Oncogene 14, 507–513 (1997).

    Article  CAS  Google Scholar 

  13. Songyang, Z. et al. SH2 domains recognize specific phosphopeptide sequences. Cell 72, 767–778 (1993).

    Article  CAS  Google Scholar 

  14. Wu, X. et al. Structural basis for the specific interaction of lysine-containing proline-rich peptides with the N-terminal SH3 domain of c-Crk. Structure 3, 215–226 (1995).

    Article  CAS  Google Scholar 

  15. Cheerathodi, M. & Ballif, B.A. Identification of CrkL-SH3 binding proteins from embryonic murine brain: implications for reelin signaling during brain development. J. Proteome Res. 10, 4453–4462 (2011).

    Article  CAS  Google Scholar 

  16. Muralidharan, V. et al. Solution structure and folding characteristics of the C-terminal SH3 domain of c-Crk-II. Biochemistry 45, 8874–8884 (2006).

    Article  CAS  Google Scholar 

  17. Sarkar, P., Reichman, C., Saleh, T., Birge, R.B. & Kalodimos, C.G. Proline cis-trans isomerization controls autoinhibition of a signaling protein. Mol. Cell 25, 413–426 (2007).

    Article  CAS  Google Scholar 

  18. Sarkar, P., Saleh, T., Tzeng, S.-R., Birge, R.B. & Kalodimos, C.G. Structural basis for regulation of the Crk signaling protein by a proline switch. Nat. Chem. Biol. 7, 51–57 (2011).

    Article  CAS  Google Scholar 

  19. Kobashigawa, Y. et al. Structural basis for the transforming activity of human cancer-related signaling adaptor protein CRK. Nat. Struct. Mol. Biol. 14, 503–510 (2007).

    Article  CAS  Google Scholar 

  20. Antoku, S. & Mayer, B.J. Distinct roles for Crk adaptor isoforms in actin reorganization induced by extracellular signals. J. Cell Sci. 122, 4228–4238 (2009).

    Article  CAS  Google Scholar 

  21. Senechal, K., Halpern, J. & Sawyers, C. The CRKL adaptor protein transforms fibroblasts and functions in transformation by the BCR-ABL oncogene. J. Biol. Chem. 271, 23255–23261 (1996).

    Article  CAS  Google Scholar 

  22. Sattler, M. & Salgia, R. Role of the adapter protein CRKL in signal transduction of normal hematopoietic and BCR/ABL-transformed cells. Leukemia 12, 637–644 (1998).

    Article  CAS  Google Scholar 

  23. Colicelli, J. ABL tyrosine kinases: evolution of function, regulation, and specificity. Sci. Signal. 3, re6 (2010).

    Article  Google Scholar 

  24. Seo, J.H. et al. A specific need for CRKL in p210BCR-ABL–induced transformation of mouse hematopoietic progenitors. Cancer Res. 70, 7325–7335 (2010).

    Article  CAS  Google Scholar 

  25. Luo, B. et al. Highly parallel identification of essential genes in cancer cells. Proc. Natl. Acad. Sci. USA 105, 20380–20385 (2008).

    Article  CAS  Google Scholar 

  26. Nichols, G.L. et al. Identification of CRKL as the constitutively phosphorylated 39-kD tyrosine phosphoprotein in chronic myelogenous leukemia cells. Blood 84, 2912–2918 (1994).

    CAS  Google Scholar 

  27. ten Hoeve, J., Arlinghaus, R.B., Guo, J.Q., Heisterkamp, N. & Groffen, J. Tyrosine phosphorylation of CRKL in Philadelphia+ leukemia. Blood 84, 1731–1736 (1994).

    CAS  Google Scholar 

  28. Lucas, C.M. et al. BCR-ABL1 tyrosine kinase activity at diagnosis, as determined via the pCrkL/CrkL ratio, is predictive of clinical outcome in chronic myeloid leukaemia. Br. J. Haematol. 149, 458–460 (2010).

    Article  CAS  Google Scholar 

  29. Guris, D.L., Fantes, J., Tara, D., Druker, B.J. & Imamoto, A. Mice lacking the homologue of the human 22q11.2 gene CRKL phenocopy neurocristopathies of DiGeorge syndrome. Nat. Genet. 27, 293–298 (2001).

    Article  CAS  Google Scholar 

  30. Wang, J. et al. Crk and CrkL present with different expression and significance in epithelial ovarian carcinoma. Mol. Carcinog. 50, 506–515 (2011).

    Article  CAS  Google Scholar 

  31. Mihrshahi, R. & Brown, M.H. Downstream of tyrosine kinase 1 and 2 play opposing roles in CD200 receptor signaling. J. Immunol. 185, 7216–7222 (2010).

    Article  CAS  Google Scholar 

  32. Donaldson, L.W., Gish, G., Pawson, T., Kay, L.E. & Forman-Kay, J.D. Structure of a regulatory complex involving the Abl SH3 domain, the Crk SH2 domain, and a Crk-derived phosphopeptide. Proc. Natl. Acad. Sci. USA 99, 14053–14058 (2002).

    Article  CAS  Google Scholar 

  33. Harkiolaki, M., Gilbert, R.J.C., Jones, E.Y. & Feller, S.M. The C-terminal SH3 domain of CRKL as a dynamic dimerization module transiently exposing a nuclear export signal. Structure 14, 1741–1753 (2006).

    Article  CAS  Google Scholar 

  34. Mittermaier, A.K. & Kay, L.E. Observing biological dynamics at atomic resolution using NMR. Trends Biochem. Sci. 34, 601–611 (2009).

    Article  CAS  Google Scholar 

  35. Tjandra, N., Feller, S., Pastor, R. & Bax, A. Rotational diffusion anisotropy of human ubiquitin from N-15 NMR relaxation. J. Am. Chem. Soc. 117, 12562–12566 (1995).

    Article  CAS  Google Scholar 

  36. Seo, J.-H., Suenaga, A., Hatakeyama, M., Taiji, M. & Imamoto, A. Structural and functional basis of a role for CRKL in a fibroblast growth factor 8–induced feed-forward loop. Mol. Cell. Biol. 29, 3076–3087 (2009).

    Article  CAS  Google Scholar 

  37. Cho, J.-H. et al. Tuning protein autoinhibition by domain destabilization. Nat. Struct. Mol. Biol. 18, 550–555 (2011).

    Article  CAS  Google Scholar 

  38. Senechal, K., Heaney, C., Druker, B. & Sawyers, C. Structural requirements for function of the Crkl adapter protein in fibroblasts and hematopoietic cells. Mol. Cell. Biol. 18, 5082–5090 (1998).

    Article  CAS  Google Scholar 

  39. Rosen, M.K. et al. Direct demonstration of an intramolecular SH2-phosphotyrosine interaction in the Crk protein. Nature 374, 477–479 (1995).

    Article  CAS  Google Scholar 

  40. Ren, R., Ye, Z.S. & Baltimore, D. Abl protein-tyrosine kinase selects the Crk adapter as a substrate using SH3-binding sites. Genes Dev. 8, 783–795 (1994).

    Article  CAS  Google Scholar 

  41. Huang, X., Wu, D., Jin, H., Stupack, D. & Wang, J.Y.J. Induction of cell retraction by the combined actions of Abl-CrkII and Rho-ROCK1 signaling. J. Cell Biol. 183, 711–723 (2008).

    Article  CAS  Google Scholar 

  42. Pawson, T. Dynamic control of signaling by modular adaptor proteins. Curr. Opin. Cell Biol. 19, 112–116 (2007).

    Article  CAS  Google Scholar 

  43. Sawada, Y. et al. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127, 1015–1026 (2006).

    Article  CAS  Google Scholar 

  44. Kardinal, C. et al. Cell-penetrating SH3 domain blocker peptides inhibit proliferation of primary blast cells from CML patients. FASEB J. 14, 1529–1538 (2000).

    Article  CAS  Google Scholar 

  45. Sriram, G. et al. Phosphorylation of Crk on tyrosine 251 in the RT loop of the SH3C domain promotes Abl kinase transactivation. Oncogene 30, 4645–4655 (2011).

    Article  CAS  Google Scholar 

  46. Li, S.S. Specificity and versatility of SH3 and other proline-recognition domains: structural basis and implications for cellular signal transduction. Biochem. J. 390, 641–653 (2005).

    Article  CAS  Google Scholar 

  47. Severin, A., Joseph, R.E., Boyken, S., Fulton, D.B. & Andreotti, A.H. Proline isomerization preorganizes the Itk SH2 domain for binding to the Itk SH3 domain. J. Mol. Biol. 387, 726–743 (2009).

    Article  CAS  Google Scholar 

  48. Chan, B. et al. SAP couples Fyn to SLAM immune receptors. Nat. Cell Biol. 5, 155–160 (2003).

    Article  CAS  Google Scholar 

  49. Rückert, M. & Otting, G. Alignment of biological macromolecules in novel nonionic liquid crystalline media for NMR experiments. J. Am. Chem. Soc. 122, 7793–7797 (2000).

    Article  Google Scholar 

  50. Shen, Y., Delaglio, F., Cornilescu, G. & Bax, A. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR 44, 213–223 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Karamanou for performing the MALLS experiments and D. Duffield for collecting the mass spectrometry data. This work was supported by the US Department of Defense (R.B.B.) and the US National Institutes of Health (GM80308 to C.G.K.).

Author information

Authors and Affiliations

Authors

Contributions

W.J., T.S., G.S., R.B.B. and C.G.K. designed research; W.J., T.S., M.-T.P. and G.S. performed research; W.J., T.S., M.-T.P., G.S., R.B.B. and C.G.K. analyzed data; W.J., T.S. and C.G.K. wrote the manuscript.

Corresponding author

Correspondence to Charalampos G Kalodimos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 3699 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jankowski, W., Saleh, T., Pai, MT. et al. Domain organization differences explain Bcr-Abl's preference for CrkL over CrkII. Nat Chem Biol 8, 590–596 (2012). https://doi.org/10.1038/nchembio.954

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.954

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing