Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Rethinking glycolysis: on the biochemical logic of metabolic pathways

Abstract

Metabolic pathways may seem arbitrary and unnecessarily complex. In many cases, a chemist might devise a simpler route for the biochemical transformation, so why has nature chosen such complex solutions? In this review, we distill lessons from a century of metabolic research and introduce new observations suggesting that the intricate structure of metabolic pathways can be explained by a small set of biochemical principles. Using glycolysis as an example, we demonstrate how three key biochemical constraints—thermodynamic favorability, availability of enzymatic mechanisms and the physicochemical properties of pathway intermediates—eliminate otherwise plausible metabolic strategies. Considering these constraints, glycolysis contains no unnecessary steps and represents one of the very few pathway structures that meet cellular demands. The analysis presented here can be applied to metabolic engineering efforts for the rational design of pathways that produce a desired product while satisfying biochemical constraints.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Embden-Meyerhof-Parnas glycolytic pathway.
Figure 2: The reduction potentials, E′, of half-reactions between functional groups composed of only carbon, oxygen and hydrogen.
Figure 3: Sequential assembly of the lower glycolytic reaction sequence according to biochemical constraints: the basic energetic and mechanistic constraints.
Figure 4: Sequential assembly of the glycolytic reaction sequence according to biochemical constraints: redox carriers, feasible mechanisms and energy conservation.
Figure 5: Proposed pathways for the production of 3-hydroxypropionate from pyruvate.

Similar content being viewed by others

References

  1. Barnett, J.A. A history of research on yeasts 5: the fermentation pathway. Yeast 20, 509–543 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Ray, L.B. Metabolism is not boring. Science 330, 1337 (2010).

    Article  PubMed  Google Scholar 

  3. Reaves, M.L. & Rabinowitz, J.D. Metabolomics in systems microbiology. Curr. Opin. Biotechnol. 22, 17–25 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Vander Heiden, M.G. Targeting cancer metabolism: a therapeutic window opens. Nat. Rev. Drug Discov. 10, 671–684 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Klitgord, N. & Segre, D. Ecosystems biology of microbial metabolism. Curr. Opin. Biotechnol. 22, 541–546 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Heinemann, M. & Sauer, U. Systems biology of microbial metabolism. Curr. Opin. Microbiol. 13, 337–343 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Molenaar, D., van Berlo, R., de Ridder, D. & Teusink, B. Shifts in growth strategies reflect tradeoffs in cellular economics. Mol. Syst. Biol. 5, 323 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jones, R.G. & Thompson, C.B. Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev. 23, 537–548 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hsu, P.P. & Sabatini, D.M. Cancer cell metabolism: Warburg and beyond. Cell 134, 703–707 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Kroemer, G. & Pouyssegur, J. Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 13, 472–482 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Folger, O. et al. Predicting selective drug targets in cancer through metabolic networks. Mol. Syst. Biol. 7, 501 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. McInerney, M.J., Sieber, J.R. & Gunsalus, R.P. Syntrophy in anaerobic global carbon cycles. Curr. Opin. Biotechnol. 20, 623–632 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dolfing, J., Jiang, B., Henstra, A.M., Stams, A.J. & Plugge, C.M. Syntrophic growth on formate: a new microbial niche in anoxic environments. Appl. Environ. Microbiol. 74, 6126–6131 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lin, L.H. et al. Long-term sustainability of a high-energy, low-diversity crustal biome. Science 314, 479–482 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Yim, H. et al. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat. Chem. Biol. 7, 445–452 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Dellomonaco, C., Clomburg, J.M., Miller, E.N. & Gonzalez, R. Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature 476, 355–359 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Bond-Watts, B.B., Bellerose, R.J. & Chang, M.C. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat. Chem. Biol. 7, 222–227 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Shen, C.R. et al. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl. Environ. Microbiol. 77, 2905–2915 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Romano, A.H. & Conway, T. Evolution of carbohydrate metabolic pathways. Res. Microbiol. 147, 448–455 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Fothergill-Gilmore, L.A. The evolution of the glycolytic pathway. Trends Biochem. Sci. 11, 47–51 (1986).

    Article  CAS  Google Scholar 

  21. Fothergill-Gilmore, L.A. & Michels, P.A. Evolution of glycolysis. Prog. Biophys. Mol. Biol. 59, 105–235 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Heinrich, R., Montero, F., Klipp, E., Waddell, T.G. & Melendez-Hevia, E. Theoretical approaches to the evolutionary optimization of glycolysis: thermodynamic and kinetic constraints. Eur. J. Biochem. 243, 191–201 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Sel'kov, E.E. Self-oscillations in glycolysis. 1. A simple kinetic model. Eur. J. Biochem. 4, 79–86 (1968).

    Article  CAS  PubMed  Google Scholar 

  24. Hynne, F., Dano, S. & Sorensen, P.G. Full-scale model of glycolysis in Saccharomyces cerevisiae. Biophys. Chem. 94, 121–163 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Stephani, A., Nuno, J.C. & Heinrich, R. Optimal stoichiometric designs of ATP-producing systems as determined by an evolutionary algorithm. J. Theor. Biol. 199, 45–61 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Teusink, B. et al. Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur. J. Biochem. 267, 5313–5329 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Meléndez-Hevia, E., Waddell, T.G., Heinrich, R. & Montero, F. Theoretical approaches to the evolutionary optimization of glycolysis—chemical analysis. Eur. J. Biochem. 244, 527–543 (1997).

    Article  PubMed  Google Scholar 

  28. Noor, E., Eden, E., Milo, R. & Alon, U. Central carbon metabolism as a minimal biochemical walk between precursors for biomass and energy. Mol. Cell 39, 809–820 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Weber, A.L. Energy from redox disproportionation of sugar carbon drives biotic and abiotic synthesis. J. Mol. Evol. 44, 354–360 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Weber, A.L. Chemical constraints governing the origin of metabolism: the thermodynamic landscape of carbon group transformations under mild aqueous conditions. Orig. Life Evol. Biosph. 32, 333–357 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Guihard, G., Benedetti, H., Besnard, M. & Letellier, L. Phosphate efflux through the channels formed by colicins and phage T5 in Escherichia coli cells is responsible for the fall in cytoplasmic ATP. J. Biol. Chem. 268, 17775–17780 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Peralta-Yahya, P.P. & Keasling, J.D. Advanced biofuel production in microbes. Biotechnol. J. 5, 147–162 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Frey, P.A. & Hegeman, A.D. Enzymatic Reaction Mechanisms (Oxford University Press, 2007).

    Book  Google Scholar 

  34. Fersht, A. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding. (W. H. Freeman, New York, 1998).

    Google Scholar 

  35. Frey, P.A. Radical mechanisms of enzymatic catalysis. Annu. Rev. Biochem. 70, 121–148 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Buckel, W. & Golding, B.T. Radical enzymes in anaerobes. Annu. Rev. Microbiol. 60, 27–49 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Feierberg, I. & Aqvist, J. Computational modeling of enzymatic keto-enol isomerization reactions. Theor. Chem. Acc. 108, 71–84 (2002).

    Article  CAS  Google Scholar 

  38. Mills, S.G. & Beak, P. Solvent effects on keto-enol equilibria: tests of quantitative models. J. Org. Chem. 50, 1216–1224 (1985).

    Article  CAS  Google Scholar 

  39. D'Ari, R. & Casadesus, J. Underground metabolism. Bioessays 20, 181–186 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Aoshima, M. & Igarashi, Y. A novel oxalosuccinate-forming enzyme involved in the reductive carboxylation of 2-oxoglutarate in Hydrogenobacter thermophilus TK-6. Mol. Microbiol. 62, 748–759 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Bar-Even, A., Noor, E., Flamholz, A., Buescher, J.M. & Milo, R. Hydrophobicity and charge shape cellular metabolite concentrations. PLoS Comput. Biol. 7, e1002166 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bar-Even, A. et al. The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50, 4402–4410 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Kerfeld, C.A., Heinhorst, S. & Cannon, G.C. Bacterial microcompartments. Annu. Rev. Microbiol. 64, 391–408 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Ovádi, J. & Srere, P.A. Macromolecular compartmentation and channeling. Int. Rev. Cytol. 192, 255–280 (2000).

    Article  PubMed  Google Scholar 

  45. Huang, X., Holden, H.M. & Raushel, F.M. Channeling of substrates and intermediates in enzyme-catalyzed reactions. Annu. Rev. Biochem. 70, 149–180 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Marinoni, I. et al. Characterization of L-aspartate oxidase and quinolinate synthase from Bacillus subtilis. FEBS J. 275, 5090–5107 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. O'Brien, P.J., Siraki, A.G. & Shangari, N. Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit. Rev. Toxicol. 35, 609–662 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Ukeda, H., Hasegawa, Y., Ishi, T. & Sawamura, M. Inactivation of Cu,Zn-superoxide dismutase by intermediates of Maillard reaction and glycolytic pathway and some sugars. Biosci. Biotechnol. Biochem. 61, 2039–2042 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Brownlee, M., Vlassara, H. & Cerami, A. Nonenzymatic glycosylation and the pathogenesis of diabetic complications. Ann. Intern. Med. 101, 527–537 (1984).

    Article  CAS  PubMed  Google Scholar 

  50. Thornalley, P.J., Langborg, A. & Minhas, H.S. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem. J. 344, 109–116 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kalapos, M.P. Methylglyoxal in living organisms: chemistry, biochemistry, toxicology and biological implications. Toxicol. Lett. 110, 145–175 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Marnett, L.J. Lipid peroxidation-DNA damage by malondialdehyde. Mutat. Res. 424, 83–95 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Marnett, L.J. Oxy radicals, lipid peroxidation and DNA damage. Toxicology 181–182, 219–222 (2002).

    Article  PubMed  Google Scholar 

  54. Marnett, L.J. et al. Naturally occurring carbonyl compounds are mutagens in Salmonella tester strain TA104. Mutat. Res. 148, 25–34 (1985).

    Article  CAS  PubMed  Google Scholar 

  55. Kalapos, M.P. The tandem of free radicals and methylglyoxal. Chem. Biol. Interact. 171, 251–271 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Weber, A.L. Kinetics of organic transformations under mild aqueous conditions: implications for the origin of life and its metabolism. Orig. Life Evol. Biosph. 34, 473–495 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Banzon, J.A. et al. Mechanism-based inactivation of phosphotriesterase by reaction of a critical histidine with a ketene intermediate. Biochemistry 34, 743–749 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Foroozesh, M. et al. Aryl acetylenes as mechanism-based inhibitors of cytochrome P450–dependent monooxygenase enzymes. Chem. Res. Toxicol. 10, 91–102 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Schräder, T. & Andreesen, J.R. Purification and characterization of protein PC, a component of glycine reductase from Eubacterium acidaminophilum. Eur. J. Biochem. 206, 79–85 (1992).

    Article  PubMed  Google Scholar 

  60. Andreesen, J.R. Glycine reductase mechanism. Curr. Opin. Chem. Biol. 8, 454–461 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Buckel, W. Unusual dehydrations in anaerobic bacteria: considering ketyls (radical anions) as reactive intermediates in enzymatic reactions. FEBS Lett. 389, 20–24 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Kim, J., Hetzel, M., Boiangiu, C.D. & Buckel, W. Dehydration of (R)-2-hydroxyacyl-CoA to enoyl-CoA in the fermentation of alpha-amino acids by anaerobic bacteria. FEMS Microbiol. Rev. 28, 455–468 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Bennett, B.D. et al. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 5, 593–599 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Qian, H., Beard, D.A. & Liang, S.D. Stoichiometric network theory for nonequilibrium biochemical systems. Eur. J. Biochem. 270, 415–421 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Beard, D.A. & Qian, H. Relationship between thermodynamic driving force and one-way fluxes in reversible processes. PLoS ONE 2, e144 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Flamholz, A., Noor, E., Bar-Even, A. & Milo, R. eQuilibrator—the biochemical thermodynamics calculator. Nucleic Acids Res. 40, D770–D775 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Meléndez-Hevia, E. & Isidoro, A. The game of the pentose phosphate cycle. J. Theor. Biol. 117, 251–263 (1985).

    Article  PubMed  Google Scholar 

  68. Mittenthal, J.E., Clarke, B., Waddell, T.G. & Fawcett, G. A new method for assembling metabolic networks, with application to the Krebs citric acid cycle. J. Theor. Biol. 208, 361–382 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Machajewski, T.D. & Wong, C.H. The catalytic asymmetric aldol reaction. Angew. Chem. Int. Edn Engl. 39, 1352–1375 (2000).

    Article  CAS  Google Scholar 

  70. Fersht, A. Electrophilic catalysis by Schiff base formation in Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding 77–79 (W. H. Freeman, 1999).

    Google Scholar 

  71. Palm, K., Luthman, K., Ros, J., Grasjo, J. & Artursson, P. Effect of molecular charge on intestinal epithelial drug transport: pH-dependent transport of cationic drugs. J. Pharmacol. Exp. Ther. 291, 435–443 (1999).

    CAS  PubMed  Google Scholar 

  72. Chakrabarti, A.C. & Deamer, D.W. Permeability of lipid bilayers to amino acids and phosphate. Biochim. Biophys. Acta 1111, 171–177 (1992).

    Article  CAS  PubMed  Google Scholar 

  73. Chakrabarti, A.C. & Deamer, D.W. Permeation of membranes by the neutral form of amino acids and peptides: relevance to the origin of peptide translocation. J. Mol. Evol. 39, 1–5 (1994).

    PubMed  Google Scholar 

  74. Finkelstein, A. Water and nonelectrolyte permeability of lipid bilayer membranes. J. Gen. Physiol. 68, 127–135 (1976).

    Article  CAS  PubMed  Google Scholar 

  75. Winiwarter, S. et al. Correlation of human jejunal permeability (in vivo) of drugs with experimentally and theoretically derived parameters. A multivariate data analysis approach. J. Med. Chem. 41, 4939–4949 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Davis, B.D. On the importance of being ionized. Arch. Biochem. Biophys. 78, 497–509 (1958).

    Article  CAS  PubMed  Google Scholar 

  77. Westheimer, F.H. Why nature chose phosphates. Science 235, 1173–1178 (1987).

    Article  CAS  PubMed  Google Scholar 

  78. Walter, A. & Gutknecht, J. Permeability of small nonelectrolytes through lipid bilayer membranes. J. Membr. Biol. 90, 207–217 (1986).

    Article  CAS  PubMed  Google Scholar 

  79. Paula, S., Volkov, A.G., Van Hoek, A.N., Haines, T.H. & Deamer, D.W. Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness. Biophys. J. 70, 339–348 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hassett, A., Blattler, W. & Knowles, J.R. Pyruvate kinase: is the mechanism of phospho transfer associative or dissociative? Biochemistry 21, 6335–6340 (1982).

    Article  CAS  PubMed  Google Scholar 

  81. Pharkya, P., Nikolaev, E.V. & Maranas, C.D. Review of the BRENDA Database. Metab. Eng. 5, 71–73 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Chang, A., Scheer, M., Grote, A., Schomburg, I. & Schomburg, D. BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009. Nucleic Acids Res. 37, D588–D592 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Holliday, G.L. et al. MACiE: exploring the diversity of biochemical reactions. Nucleic Acids Res. 40, D783–D789 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Schink, B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. 61, 262–280 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. McInerney, M.J. et al. Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann. NY Acad. Sci. 1125, 58–72 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Bagramyan, K. & Trchounian, A. Structural and functional features of formate hydrogen lyase, an enzyme of mixed-acid fermentation from Escherichia coli. Biochemistry (Mosc.) 68, 1159–1170 (2003).

    Article  CAS  Google Scholar 

  87. Garrigues, C., Loubiere, P., Lindley, N.D. & Cocaign-Bousquet, M. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. J. Bacteriol. 179, 5282–5287 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fuhrer, T., Fischer, E. & Sauer, U. Experimental identification and quantification of glucose metabolism in seven bacterial species. J. Bacteriol. 187, 1581–1590 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Conway, T. The Entner-Doudoroff pathway: history, physiology and molecular biology. FEMS Microbiol. Rev. 9, 1–27 (1992).

    Article  CAS  PubMed  Google Scholar 

  90. Noguchi, K. & Yoshida, K. Interaction between photosynthesis and respiration in illuminated leaves. Mitochondrion 8, 87–99 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Bustos, D.M., Bustamante, C.A. & Iglesias, A.A. Involvement of non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase in response to oxidative stress. J. Plant Physiol. 165, 456–461 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Zhang, X., Harrison, D.H. & Cui, Q. Functional specificities of methylglyoxal synthase and triosephosphate isomerase: a combined QM/MM analysis. J. Am. Chem. Soc. 124, 14871–14878 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Hopper, D.J. & Cooper, R.A. The regulation of Escherichia coli methylglyoxal synthase; a new control site in glycolysis? FEBS Lett. 13, 213–216 (1971).

    Article  CAS  PubMed  Google Scholar 

  94. Ahmed, H. et al. The semi-phosphorylative Entner-Doudoroff pathway in hyperthermophilic archaea: a re-evaluation. Biochem. J. 390, 529–540 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Berg, I.A. et al. Autotrophic carbon fixation in archaea. Nat. Rev. Microbiol. 8, 447–460 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Jiang, X., Meng, X. & Xian, M. Biosynthetic pathways for 3-hydroxypropionic acid production. Appl. Microbiol. Biotechnol. 82, 995–1003 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Sato, K., Nishina, Y., Setoyama, C., Miura, R. & Shiga, K. Unusually high standard redox potential of acrylyl-CoA/propionyl-CoA couple among enoyl-CoA/acyl-CoA couples: a reason for the distinct metabolic pathway of propionyl-CoA from longer acyl-CoAs. J. Biochem. 126, 668–675 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Frey, P.A. The role of radicals in enzymatic processes. Chem. Rec. 1, 277–289 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Tawfik for helpful discussions, scientific support and critique regarding the manuscript. We also would like to thank D. Arlow, R. Burton, D. Fraenkel, R. Last, W. Liebermeister, A. Weber and members of the Milo laboratory for helpful comments. A.B.-E. is supported by the Adams Fellowship Program of the Israel Academy of Sciences and Humanities. E.N. is grateful to the Azrieli Foundation for the award of an Azrieli Fellowship. This study was supported by the European Research Council (grant 260392–SYMPAC) and by the Israel Science Foundation (Grant 750/09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Milo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bar-Even, A., Flamholz, A., Noor, E. et al. Rethinking glycolysis: on the biochemical logic of metabolic pathways. Nat Chem Biol 8, 509–517 (2012). https://doi.org/10.1038/nchembio.971

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.971

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research