Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rationally designed families of orthogonal RNA regulators of translation

Abstract

Our ability to routinely engineer genetic networks for applications is limited by the scarcity of highly specific and non–cross-reacting (orthogonal) gene regulators with predictable behavior. Though antisense RNAs are attractive contenders for this purpose, quantitative understanding of their specificity and sequence-function relationship sufficient for their design has been limited. Here, we use rationally designed variants of the RNA-IN–RNA-OUT antisense RNA–mediated translation system from the insertion sequence IS10 to quantify >500 RNA-RNA interactions in Escherichia coli and integrate the data set with sequence-activity modeling to identify the thermodynamic stability of the duplex and the seed region as the key determinants of specificity. Applying this model, we predict the performance of an additional 2,600 antisense-regulator pairs, forecast the possibility of large families of orthogonal mutants, and forward engineer and experimentally validate two RNA pairs orthogonal to an existing group of five from the training data set. We discuss the potential use of these regulators in next-generation synthetic biology applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of sense RNA-IN and antisense RNA-OUT interaction.
Figure 2: A rationally designed library for finding orthogonal mutants in the RNA-IN/OUT system.
Figure 3: Repression characteristics and estimation of total number of orthogonal pairs in the experimental data set.
Figure 4: The sequence-activity PLSR model and experimental validation of model predictions.

Similar content being viewed by others

References

  1. Keasling, J.D. Synthetic biology for synthetic chemistry. ACS Chem. Biol. 3, 64–76 (2008).

    Article  CAS  Google Scholar 

  2. Ruder, W.C., Lu, T. & Collins, J.J. Synthetic biology moving into the clinic. Science 333, 1248–1252 (2011).

    Article  CAS  Google Scholar 

  3. Lucks, J.B., Qi, L., Whitaker, W.R. & Arkin, A.P. Toward scalable parts families for predictable design of biological circuits. Curr. Opin. Microbiol. 11, 567–573 (2008).

    Article  Google Scholar 

  4. Purnick, P.E. & Weiss, R. The second wave of synthetic biology: from modules to systems. Nat. Rev. Mol. Cell Biol. 10, 410–422 (2009).

    Article  CAS  Google Scholar 

  5. Zhan, J. et al. Develop reusable and combinable designs for transcriptional logic gates. Mol. Syst. Biol. 6, 388 (2010).

    Article  Google Scholar 

  6. Rackham, O. & Chin, J.W. A network of orthogonal ribosome x mRNA pairs. Nat. Chem. Biol. 1, 159–166 (2005).

    Article  CAS  Google Scholar 

  7. Alper, H., Fischer, C., Nevoigt, E. & Stephanopoulos, G. Tuning genetic control through promoter engineering. Proc. Natl. Acad. Sci. USA 102, 12678–12683 (2005).

    Article  CAS  Google Scholar 

  8. Deuschle, U., Kammerer, W., Gentz, R. & Bujard, H. Promoters of Escherichia coli: a hierarchy of in vivo strength indicates alternate structures. EMBO J. 5, 2987–2994 (1986).

    Article  CAS  Google Scholar 

  9. Salis, H.M., Mirsky, E.A. & Voigt, C.A. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27, 946–950 (2009).

    Article  CAS  Google Scholar 

  10. Jonsson, J., Norberg, T., Carlsson, L., Gustafsson, C. & Wold, S. Quantitative sequence-activity models (QSAM)—tools for sequence design. Nucleic Acids Res. 21, 733–739 (1993).

    Article  CAS  Google Scholar 

  11. Lucks, J.B., Qi, L., Mutalik, V.K., Wang, D. & Arkin, A.P. Versatile RNA-sensing transcriptional regulators for engineering genetic networks. Proc. Natl. Acad. Sci. USA 108, 8617–8622 (2011).

    Article  CAS  Google Scholar 

  12. Liu, C.C., Qi, L., Yanofsky, C. & Arkin, A.P. Regulation of transcription by unnatural amino acids. Nat. Biotechnol. 29, 164–168 (2011).

    Article  CAS  Google Scholar 

  13. Chubiz, L.M. & Rao, C.V. Computational design of orthogonal ribosomes. Nucleic Acids Res. 36, 4038–4046 (2008).

    Article  CAS  Google Scholar 

  14. Dixon, N. et al. Reengineering orthogonally selective riboswitches. Proc. Natl. Acad. Sci. USA 107, 2830–2835 (2010).

    Article  CAS  Google Scholar 

  15. Isaacs, F.J. et al. Engineered riboregulators enable post-transcriptional control of gene expression. Nat. Biotechnol. 22, 841–847 (2004).

    Article  CAS  Google Scholar 

  16. Carothers, J.M., Goler, J.A., Juminaga, D. & Keasling, J.D. Model-driven engineering of RNA devices to quantitatively program gene expression. Science 334, 1716–1719 (2011).

    Article  CAS  Google Scholar 

  17. Win, M.N. & Smolke, C.D. Higher-order cellular information processing with synthetic RNA devices. Science 322, 456–460 (2008).

    Article  CAS  Google Scholar 

  18. Carrier, T.A. & Keasling, J.D. Library of synthetic 5′ secondary structures to manipulate mRNA stability in Escherichia coli. Biotechnol. Prog. 15, 58–64 (1999).

    Article  CAS  Google Scholar 

  19. Smolke, C.D. & Keasling, J.D. Effect of copy number and mRNA processing and stabilization on transcript and protein levels from an engineered dual-gene operon. Biotechnol. Bioeng. 78, 412–424 (2002).

    Article  CAS  Google Scholar 

  20. Babiskin, A.H. & Smolke, C.D. A synthetic library of RNA control modules for predictable tuning of gene expression in yeast. Mol. Syst. Biol. 7, 471 (2011).

    Article  CAS  Google Scholar 

  21. Saito, H. et al. Synthetic translational regulation by an L7Ae-kink-turn RNP switch. Nat. Chem. Biol. 6, 71–78 (2010).

    Article  CAS  Google Scholar 

  22. Culler, S.J., Hoff, K.G. & Smolke, C.D. Reprogramming cellular behavior with RNA controllers responsive to endogenous proteins. Science 330, 1251–1255 (2010).

    Article  CAS  Google Scholar 

  23. Benenson, Y. RNA-based computation in live cells. Curr. Opin. Biotechnol. 20, 471–478 (2009).

    Article  CAS  Google Scholar 

  24. Delebecque, C.J., Lindner, A.B., Silver, P.A. & Aldaye, F.A. Organization of intracellular reactions with rationally designed RNA assemblies. Science 333, 470–474 (2011).

    Article  CAS  Google Scholar 

  25. Georg, J. & Hess, W.R. cis-antisense RNA, another level of gene regulation in bacteria. Microbiol. Mol. Biol. Rev. 75, 286–300 (2011).

    Article  CAS  Google Scholar 

  26. Engdahl, H.M., Hjalt, T.A. & Wagner, E.G. A two unit antisense RNA cassette test system for silencing of target genes. Nucleic Acids Res. 25, 3218–3227 (1997).

    Article  CAS  Google Scholar 

  27. Man, S. et al. Artificial trans-encoded small non-coding RNAs specifically silence the selected gene expression in bacteria. Nucleic Acids Res. 39, e50 (2011).

    Article  CAS  Google Scholar 

  28. Nakashima, N. & Tamura, T. Conditional gene silencing of multiple genes with antisense RNAs and generation of a mutator strain of Escherichia coli. Nucleic Acids Res. 37, e103 (2009).

    Article  Google Scholar 

  29. Thomason, M.K. & Storz, G. Bacterial antisense RNAs: how many are there, and what are they doing? Annu. Rev. Genet. 44, 167–188 (2010).

    Article  CAS  Google Scholar 

  30. Wagner, E.G.H., Altuvia, S. & Romby, P. Antisense RNAs in bacteria and their genetic elements. Adv. Genet. 46, 361–398 (2002).

    Article  CAS  Google Scholar 

  31. Sahota, G. & Stormo, G.D. Novel sequence-based method for identifying transcription factor binding sites in prokaryotic genomes. Bioinformatics 26, 2672–2677 (2010).

    Article  CAS  Google Scholar 

  32. Rajewsky, N. microRNA target predictions in animals. Nat. Genet. 38 (suppl. 1) S8–S13 (2006).

    Article  CAS  Google Scholar 

  33. Thomas, M., Lieberman, J. & Lal, A. Desperately seeking microRNA targets. Nat. Struct. Mol. Biol. 17, 1169–1174 (2010).

    Article  CAS  Google Scholar 

  34. Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R. & Benenson, Y. Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science 333, 1307–1311 (2011).

    Article  CAS  Google Scholar 

  35. Kittle, J.D., Simons, R.W., Lee, J. & Kleckner, N. Insertion sequence IS10 anti-sense pairing initiates by an interaction between the 5′ end of the target RNA and a loop in the anti-sense RNA. J. Mol. Biol. 210, 561–572 (1989).

    Article  CAS  Google Scholar 

  36. Ma, C. & Simons, R.W. The IS10 antisense RNA blocks ribosome binding at the transposase translation initiation site. EMBO J. 9, 1267–1274 (1990).

    Article  CAS  Google Scholar 

  37. Case, C.C., Simons, E.L. & Simons, R.W. The IS10 transposase mRNA is destabilized during antisense RNA control. EMBO J. 9, 1259–1266 (1990).

    Article  CAS  Google Scholar 

  38. Jain, C. IS10 antisense control in vivo is affected by mutations throughout the region of complementarity between the interacting RNAs. J. Mol. Biol. 246, 585–594 (1995).

    CAS  PubMed  Google Scholar 

  39. Franch, T., Petersen, M., Wagner, E.G., Jacobsen, J.P. & Gerdes, K. Antisense RNA regulation in prokaryotes: rapid RNA/RNA interaction facilitated by a general U-turn loop structure. J. Mol. Biol. 294, 1115–1125 (1999).

    Article  CAS  Google Scholar 

  40. Pédelacq, J.D., Cabantous, S., Tran, T., Terwilliger, T.C. & Waldo, G.S. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24, 79–88 (2006).

    Article  Google Scholar 

  41. Jain, C. Models for pairing of IS10 encoded antisense RNAs in vivo. J. Theor. Biol. 186, 431–439 (1997).

    Article  CAS  Google Scholar 

  42. Markham, N.R. & Zuker, M. UNAFold: software for nucleic acid folding and hybridization. Methods Mol. Biol. 453, 3–31 (2008).

    Article  CAS  Google Scholar 

  43. Doench, J.G. & Sharp, P.A. Specificity of microRNA target selection in translational repression. Genes Dev. 18, 504–511 (2004).

    Article  CAS  Google Scholar 

  44. Wold, S., Sjostrom, M. & Eriksson, L. PLS-regression: a basic tool of chemometrics. Chemometr. Intell. Lab. 58, 109–130 (2001).

    Article  CAS  Google Scholar 

  45. Papenfort, K., Bouvier, M., Mika, F., Sharma, C.M. & Vogel, J. Evidence for an autonomous 5′ target recognition domain in an Hfq-associated small RNA. Proc. Natl. Acad. Sci. USA 107, 20435–20440 (2010).

    Article  CAS  Google Scholar 

  46. Beisel, C.L. & Storz, G. Base pairing small RNAs and their roles in global regulatory networks. FEMS Microbiol. Rev. 34, 866–882 (2010).

    Article  CAS  Google Scholar 

  47. Endy, D. Foundations for engineering biology. Nature 438, 449–453 (2005).

    Article  CAS  Google Scholar 

  48. Tabor, J.J., Levskaya, A. & Voigt, C.A. Multichromatic control of gene expression in Escherichia coli. J. Mol. Biol. 405, 315–324 (2011).

    Article  CAS  Google Scholar 

  49. An, W. & Chin, J.W. Synthesis of orthogonal transcription-translation networks. Proc. Natl. Acad. Sci. USA 106, 8477–8482 (2009).

    Article  CAS  Google Scholar 

  50. Lee, T.S. et al. BglBrick vectors and datasheets: A synthetic biology platform for gene expression. J. Biol. Eng. 5, 12 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank G. Cambray, E. Gogol, C. Liu and J. Skerker for comments on the manuscript. V.K.M. was supported by British Petroleum under contract number LB08004883 at the Joint BioEnergy Institute. A.P.A. and L.Q. acknowledge support from the Synthetic Biology Engineering Research Center under US National Science Foundation grant number 04-570/0540879. J.C.G. acknowledges financial support by the Portuguese Fundação para a Ciência e a Tecnologia (SFRH/BD/47819/2008). J.B.L. acknowledges the financial support of the Miller Institute for Basic Scientific Research. This work conducted by the Joint BioEnergy Institute was supported by the Office of Science, Office of Biological and Environmental Research, of the US Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

V.K.M. conceived of the study, designed and performed experiments, built the computational model. L.Q. designed and performed experiments. J.C.G. designed and built the computational model. J.B.L. provided reagents and key insights. A.P.A advised at all levels of the project. V.K.M. and A.P.A. wrote the manuscript. V.K.M., L.Q., J.C.G., J.B.L. and A.P.A. interpreted results, discussed and commented on the manuscript.

Corresponding author

Correspondence to Adam P Arkin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 13048 kb)

Supplementary Data Set 1

Strains used in this work (XLSX 39 kb)

Supplementary Data Set 2

RNA In / RNA Out, etc. (PDF 3912 kb)

Supplementary Data Set 3

PLS Model input for 23*23 dataset (XLSX 104 kb)

Supplementary Data Set 4

PLS Model input for 56*56 dataset (XLSX 225 kb)

Supplementary Data Set 5

Predicted mutually orthogonal families of translation regulators from predicted repression dataset presented in Supplementary Table 10 (XLSX 240 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mutalik, V., Qi, L., Guimaraes, J. et al. Rationally designed families of orthogonal RNA regulators of translation. Nat Chem Biol 8, 447–454 (2012). https://doi.org/10.1038/nchembio.919

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.919

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research