Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Using transcriptome sequencing to identify mechanisms of drug action and resistance

Abstract

Determining mechanisms of drug action in human cells remains a major challenge. Here we describe an approach in which multiple-drug-resistant clones are isolated and transcriptome sequencing is used to find mutations in each clone. Further analysis of mutations common to more than one clone can identify a drug's physiological target and indirect resistance mechanisms, as indicated by our proof-of-concept studies of the cytotoxic anticancer drugs BI 2536 and bortezomib.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of BI 2536–resistant clones.
Figure 2: Characterization of bortezomib-resistant clones.

Similar content being viewed by others

References

  1. Chan, J.N., Nislow, C. & Emili, A. Trends Pharmacol. Sci. 31, 82–88 (2010).

    Article  CAS  Google Scholar 

  2. Giaever, G. et al. Nat. Genet. 21, 278–283 (1999).

    Article  CAS  Google Scholar 

  3. Ho, C.H. et al. Nat. Biotechnol. 27, 369–377 (2009).

    Article  CAS  Google Scholar 

  4. Walker, G.M. J. Gen. Microbiol. 128, 61–71 (1982).

    CAS  PubMed  Google Scholar 

  5. Ong, S.E. et al. Proc. Natl. Acad. Sci. USA 106, 4617–4622 (2009).

    Article  CAS  Google Scholar 

  6. Rix, U. & Superti-Furga, G. Nat. Chem. Biol. 5, 616–624 (2009).

    Article  CAS  Google Scholar 

  7. Weiss, W.A., Taylor, S.S. & Shokat, K.M. Nat. Chem. Biol. 3, 739–744 (2007).

    Article  CAS  Google Scholar 

  8. Gorre, M.E. et al. Science 293, 876–880 (2001).

    CAS  Google Scholar 

  9. Azam, M., Latek, R.R. & Daley, G.Q. Cell 112, 831–843 (2003).

    Article  CAS  Google Scholar 

  10. Lénárt, P. et al. Curr. Biol. 17, 304–315 (2007).

    Article  Google Scholar 

  11. Teraishi, F. et al. Cancer Res. 65, 6380–6387 (2005).

    Article  CAS  Google Scholar 

  12. Glaab, W.E. & Tindall, K.R. Carcinogenesis 18, 1–8 (1997).

    Article  CAS  Google Scholar 

  13. Girdler, F. et al. Chem. Biol. 15, 552–562 (2008).

    Article  CAS  Google Scholar 

  14. Kothe, M. et al. Chem. Biol. Drug Des. 70, 540–546 (2007).

    Article  CAS  Google Scholar 

  15. Scutt, P.J. et al. J. Biol. Chem. 284, 15880–15893 (2009).

    Article  CAS  Google Scholar 

  16. Yusuf, R.Z., Duan, Z., Lamendola, D.E., Penson, R.T. & Seiden, M.V. Curr. Cancer Drug Targets 3, 1–19 (2003).

    Article  CAS  Google Scholar 

  17. Chen, D., Frezza, M., Schmitt, S., Kanwar, J. & Dou, Q.P. Curr. Cancer Drug Targets 11, 239–253 (2011).

    Article  CAS  Google Scholar 

  18. Lü, S. et al. J. Pharmacol. Exp. Ther. 326, 423–431 (2008).

    Article  Google Scholar 

  19. Oerlemans, R. et al. Blood 112, 2489–2499 (2008).

    Article  CAS  Google Scholar 

  20. Groll, M., Berkers, C.R., Ploegh, H.L. & Ovaa, H. Structure 14, 451–456 (2006).

    Article  CAS  Google Scholar 

  21. Skoufias, D.A. et al. J. Biol. Chem. 281, 17559–17569 (2006).

    Article  CAS  Google Scholar 

  22. Rickert, K.W. et al. Arch. Biochem. Biophys. 469, 220–231 (2008).

    Article  CAS  Google Scholar 

  23. Wood, K.W. et al. Proc. Natl. Acad. Sci. USA 107, 5839–5844 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Genomics Resources Core Facility of Weill Cornell Medical College for conducting the RNA-seq and D. Soong (Weill Cornell Medical College) for providing custom analysis software. This work was supported by the US National Science Foundation CAREER grant 1054964 (O.E.) and US National Institutes of Health GM98579 and GM65933 (T.M.K.).

Author information

Authors and Affiliations

Authors

Contributions

S.A.W. carried out all experiments other than the selection of BI 2536–resistant clones, which was done by B.R.H. O.E. conducted bioinformatics analysis. T.M.K. conceived the project, and T.M.K. and O.E. directed the project.

Corresponding authors

Correspondence to Olivier Elemento or Tarun M Kapoor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 782 kb)

Supplementary Dataset 1

Upregulated Genes in BI 2536-resistant Clones, values are log2 ratios between clone RPKM and HCT-116 RPKM (XLS 93 kb)

Supplementary Dataset 2

Downregulated Genes in BI 2536-resistant Clones, values are log2 ratios between clone RPKM and HCT-116 RPKM (XLS 89 kb)

Supplementary Dataset 3

Upregulated Genes in Bortezomib-resistant Clones, values are log2 ratios between clone RPKM and HCT-116 RPKM (XLS 182 kb)

Supplementary Dataset 4

Downregulated Genes in Bortezomib-resistant Clones, values are log2 ratios between clone RPKM and HCT-116 RPKM (XLS 148 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wacker, S., Houghtaling, B., Elemento, O. et al. Using transcriptome sequencing to identify mechanisms of drug action and resistance. Nat Chem Biol 8, 235–237 (2012). https://doi.org/10.1038/nchembio.779

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.779

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research