Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

The ydaO motif is an ATP-sensing riboswitch in Bacillus subtilis

Abstract

We report what is to our knowledge the first natural RNA that regulates gene expression in response to intracellular ATP. Using a biochemical screen, we found that several putative riboswitches bind ATP in vitro. The ydaO motif specifically bound ATP and regulated expression of endogenous and reporter genes in response to ATP concentrations in Bacillus subtilis. This discovery demonstrates a role for RNAs in regulating gene expression in response to energy balance in bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The ydaO motif binds ATP in vitro.
Figure 2: The ydaO motif is an ATP riboswitch that functions as an 'off switch' in vivo.

Similar content being viewed by others

References

  1. Tarasov, A.I., Griffiths, E.J. & Rutter, G.A. Cell Calcium 52, 28–35 (2012).

    Article  CAS  Google Scholar 

  2. Hardie, D.G., Ross, F.A. & Hawley, S.A. Nat. Rev. Mol. Cell Biol. 13, 251–262 (2012).

    Article  CAS  Google Scholar 

  3. Sluse, F.E. Adv. Exp. Med. Biol. 942, 137–156 (2012).

    Article  CAS  Google Scholar 

  4. Bastet, L., Dube, A., Masse, E. & Lafontaine, D.A. Mol. Microbiol. 80, 1148–1154 (2011).

    Article  CAS  Google Scholar 

  5. Sudarsan, N. et al. Science 321, 411–413 (2008).

    Article  CAS  Google Scholar 

  6. Sassanfar, M. & Szostak, J.W. Nature 364, 550–553 (1993).

    Article  CAS  Google Scholar 

  7. Smith, A.M., Fuchs, R.T., Grundy, F.J. & Henkin, T.M. RNA Biol. 7, 104–110 (2010).

    Article  CAS  Google Scholar 

  8. Weinberg, Z. et al. Genome Biol. 11, R31 (2010).

    Article  Google Scholar 

  9. Montange, R.K. et al. J. Mol. Biol. 396, 761–772 (2010).

    Article  CAS  Google Scholar 

  10. Dieckmann, T., Suzuki, E., Nakamura, G.K. & Feigon, J. RNA 2, 628–640 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Block, K.F., Hammond, M.C. & Breaker, R.R. J. Bacteriol. 192, 3983–3989 (2010).

    Article  CAS  Google Scholar 

  12. McTaggart, J.S., Clark, R.H. & Ashcroft, F.M. J. Physiol. (Lond.) 588, 3201–3209 (2010).

    Article  CAS  Google Scholar 

  13. Dennis, P.B. et al. Science 294, 1102–1105 (2001).

    Article  CAS  Google Scholar 

  14. McCabe, B.C. & Gollnick, P. J. Bacteriol. 186, 5157–5159 (2004).

    Article  CAS  Google Scholar 

  15. Kato-Yamada, Y. FEBS Lett. 579, 6875–6878 (2005).

    Article  CAS  Google Scholar 

  16. Gaal, T., Bartlett, M.S., Ross, W., Turnbough, C.L. Jr. & Gourse, R.L. Science 278, 2092–2097 (1997).

    Article  CAS  Google Scholar 

  17. Regulski, E.E. & Breaker, R.R. Methods Mol. Biol. 419, 53–67 (2008).

    Article  CAS  Google Scholar 

  18. Montange, R.K. & Batey, R.T. Annu. Rev. Biophys. 37, 117–133 (2008).

    Article  CAS  Google Scholar 

  19. Watson, P.Y. & Fedor, M.J. Nat. Struct. Mol. Biol. 18, 359–363 (2011).

    Article  CAS  Google Scholar 

  20. Noeske, J. et al. Proc. Natl. Acad. Sci. USA 102, 1372–1377 (2005).

    Article  CAS  Google Scholar 

  21. Allenby, N.E. et al. J. Bacteriol. 187, 8063–8080 (2005).

    Article  CAS  Google Scholar 

  22. Guffanti, A.A., Clejan, S., Falk, L.H., Hicks, D.B. & Krulwich, T.A. J. Bacteriol. 169, 4469–4478 (1987).

    Article  CAS  Google Scholar 

  23. Barrick, J.E. et al. Proc. Natl. Acad. Sci. USA 101, 6421–6426 (2004).

    Article  CAS  Google Scholar 

  24. Holtmann, G., Bakker, E.P., Uozumi, N. & Bremer, E. J. Bacteriol. 185, 1289–1298 (2003).

    Article  CAS  Google Scholar 

  25. Lee, E.J. & Groisman, E.A. Nature 486, 271–275 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge J. Viladoms for thoughtful conversations and critical reading of this manuscript. We thank the groups of E. Winzeler and P. Sun for access to qPCR instruments and the Skaggs Institute for Chemical Biology for graduate fellowship support of P.Y. Watson.

Author information

Authors and Affiliations

Authors

Contributions

P.Y.W. and M.J.F. conceived of and designed experiments, analyzed the data and prepared the manuscript. P.Y.W. conducted the experiments.

Corresponding author

Correspondence to Martha J Fedor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 1423 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watson, P., Fedor, M. The ydaO motif is an ATP-sensing riboswitch in Bacillus subtilis. Nat Chem Biol 8, 963–965 (2012). https://doi.org/10.1038/nchembio.1095

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1095

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing