Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis

An Erratum to this article was published on 26 November 2012

This article has been updated

Abstract

Cancer cells engage in a metabolic program to enhance biosynthesis and support cell proliferation. The regulatory properties of pyruvate kinase M2 (PKM2) influence altered glucose metabolism in cancer. The interaction of PKM2 with phosphotyrosine-containing proteins inhibits enzyme activity and increases the availability of glycolytic metabolites to support cell proliferation. This suggests that high pyruvate kinase activity may suppress tumor growth. We show that expression of PKM1, the pyruvate kinase isoform with high constitutive activity, or exposure to published small-molecule PKM2 activators inhibits the growth of xenograft tumors. Structural studies reveal that small-molecule activators bind PKM2 at the subunit interaction interface, a site that is distinct from that of the endogenous activator fructose-1,6-bisphosphate (FBP). However, unlike FBP, binding of activators to PKM2 promotes a constitutively active enzyme state that is resistant to inhibition by tyrosine-phosphorylated proteins. These data support the notion that small-molecule activation of PKM2 can interfere with anabolic metabolism.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PKM1 expression in cancer cells impairs xenograft tumor growth.
Figure 2: TEPP-46 and DASA-58 isoform specificity in vitro and in cells.
Figure 3: Activators promote PKM2 tetramer formation and prevent inhibition by phosphotyrosine signaling.
Figure 4: Structural analysis of the PKM2 activator mode of action.
Figure 5: Metabolic effects of cell treatment with PKM2 activators.
Figure 6: PKM2 activators impair xenograft growth.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

Change history

  • 11 October 2012

    In the version of this article initially published, the accession codes to the Protein Data Bank were omitted. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Tennant, D.A., Duran, R.V. & Gottlieb, E. Targeting metabolic transformation for cancer therapy. Nat. Rev. Cancer 10, 267–277 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Vander Heiden, M.G. Targeting cancer metabolism: a therapeutic window opens. Nat. Rev. Drug Discov. 10, 671–684 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Vander Heiden, M.G., Cantley, L.C. & Thompson, C.B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Cairns, R.A., Harris, I.S. & Mak, T.W. Regulation of cancer cell metabolism. Nat. Rev. Cancer 11, 85–95 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Levine, A.J. & Puzio-Kuter, A.M. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330, 1340–1344 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Trachootham, D., Alexandre, J. & Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov. 8, 579–591 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Weissleder, R. Molecular imaging in cancer. Science 312, 1168–1171 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Christofk, H.R. et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230–233 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Mazurek, S. Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int. J. Biochem. Cell Biol. 43, 969–980 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Noguchi, T., Inoue, H. & Tanaka, T. The M1- and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. J. Biol. Chem. 261, 13807–13812 (1986).

    CAS  PubMed  Google Scholar 

  11. Clower, C.V. et al. The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism. Proc. Natl. Acad. Sci. USA 107, 1894–1899 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yamada, K. & Noguchi, T. Regulation of pyruvate kinase M gene expression. Biochem. Biophys. Res. Commun. 256, 257–262 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Ikeda, Y., Tanaka, T. & Noguchi, T. Conversion of non-allosteric pyruvate kinase isozyme into an allosteric enzyme by a single amino acid substitution. J. Biol. Chem. 272, 20495–20501 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Ikeda, Y. & Noguchi, T. Allosteric regulation of pyruvate kinase M2 isozyme involves a cysteine residue in the intersubunit contact. J. Biol. Chem. 273, 12227–12233 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Ashizawa, K., Willingham, M.C., Liang, C.M. & Cheng, S.Y. In vivo regulation of monomer-tetramer conversion of pyruvate kinase subtype M2 by glucose is mediated via fructose 1,6-bisphosphate. J. Biol. Chem. 266, 16842–16846 (1991).

    CAS  PubMed  Google Scholar 

  16. Ashizawa, K., McPhie, P., Lin, K.H. & Cheng, S.Y. An in vitro novel mechanism of regulating the activity of pyruvate kinase M2 by thyroid hormone and fructose 1, 6-bisphosphate. Biochemistry 30, 7105–7111 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Christofk, H.R., Vander Heiden, M.G., Wu, N., Asara, J.M. & Cantley, L.C. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452, 181–186 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Eigenbrodt, E., Reinacher, M., Scheefers-Borchel, U., Scheefers, H. & Friis, R. Double role for pyruvate kinase type M2 in the expansion of phosphometabolite pools found in tumor cells. Crit. Rev. Oncog. 3, 91–115 (1992).

    CAS  PubMed  Google Scholar 

  19. Anastasiou, D. et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334, 1278–1283 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vander Heiden, M.G. et al. Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 329, 1492–1499 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Locasale, J.W., Vander Heiden, M.G. & Cantley, L.C. Rewiring of glycolysis in cancer cell metabolism. Cell Cycle 9, 4253 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Jiang, J.K. et al. Evaluation of thieno[3,2-b]pyrrole[3,2-d]pyridazinones as activators of the tumor cell specific M2 isoform of pyruvate kinase. Bioorg. Med. Chem. Lett. 20, 3387–3393 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Boxer, M.B. et al. Evaluation of substituted N,N′-diarylsulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase. J. Med. Chem. 53, 1048–1055 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ikeda, Y., Taniguchi, N. & Noguchi, T. Dominant negative role of the glutamic acid residue conserved in the pyruvate kinase M(1) isozyme in the heterotropic allosteric effect involving fructose-1,6-bisphosphate. J. Biol. Chem. 275, 9150–9156 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Kato, H., Fukuda, T., Parkison, C., McPhie, P. & Cheng, S.Y. Cytosolic thyroid hormone-binding protein is a monomer of pyruvate kinase. Proc. Natl. Acad. Sci. USA 86, 7861–7865 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hitosugi, T. et al. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci. Signal. 2, ra73 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lv, L. et al. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol. Cell 42, 719–730 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Luo, W. et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145, 732–744 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hoshino, A., Hirst, J.A. & Fujii, H. Regulation of cell proliferation by interleukin-3–induced nuclear translocation of pyruvate kinase. J. Biol. Chem. 282, 17706–17711 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Steták, A. et al. Nuclear translocation of the tumor marker pyruvate kinase M2 induces programmed cell death. Cancer Res. 67, 1602–1608 (2007).

    Article  PubMed  Google Scholar 

  31. Hatzivassiliou, G. et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8, 311–321 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Vander Heiden, M.G. et al. Identification of small molecule inhibitors of pyruvate kinase M2. Biochem. Pharmacol. 79, 1118–1124 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. in Methods in Enzymology Vol. 276, 307–326 (Academic Press, 1997).

  34. Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. HKL-3000: the integration of data reduction and structure solution—from diffraction images to an initial model in minutes. Acta Crystallogr. D Biol. Crystallogr. 62, 859–866 (2006).

    Article  PubMed  Google Scholar 

  35. Berman, H.M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schüttelkopf, A.W. & van Aalten, D.M. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 60, 1355–1363 (2004).

    Article  PubMed  Google Scholar 

  37. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Davis, I.W., Murray, L.W., Richardson, J.S. & Richardson, D.C. MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res. 32, W615–W619 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schumacker, P.T., Chandel, N. & Agusti, A.G. Oxygen conformance of cellular respiration in hepatocytes. Am. J. Physiol. 265, L395–L402 (1993).

    CAS  PubMed  Google Scholar 

  41. Metallo, C.M. et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380–384 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yuan, M., Breitkopf, S.B., Yang, X. & Asara, J.M. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat. Protoc. 7, 872–881 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xia, J., Mandal, R., Sinelnikov, I.V., Broadhurst, D. & Wishart, D.S. MetaboAnalyst 2.0–a comprehensive server for metabolomic data analysis. Nucleic Acids Res. W127–W133 (2012).

Download references

Acknowledgements

The Structural Genomics Consortium is a registered charity (1097737) and receives funds from the Canadian Institutes for Health Research, the Canadian Foundation for Innovation, Genome Canada through the Ontario Genomics Institute, GlaxoSmithKline, Karolinska Institutet, the Knut and Alice Wallenberg Foundation, the Ontario Innovation Trust, the Ontario Ministry for Research and Innovation, Merck and Co., Inc., the Novartis Research Foundation, the Swedish Agency for Innovation Systems, the Swedish Foundation for Strategic Research and the Wellcome Trust. The crystallography results shown in this report are derived from work performed at Argonne National Laboratory, Structural Biology Center at the Advanced Photon Source. Argonne is operated by UChicago Argonne, LLC for the US Department of Energy, Office of Biological and Environmental Research under contract DE-AC02-06CH11357. We thank P. Chang for experimental advice related to sucrose gradient ultracentrifugation and SAI Advantium Pharma Ltd. for help with pharmacokinetics studies. We also thank M. Kini for experimental help and acknowledge M. Yuan and S. Breitkopf for help with MS experiments. This work was supported by the Molecular Libraries Initiative of the NIH Roadmap for Medical Research and the Intramural Research Program of the National Human Genome Research Institute, NIH and by NIH grant R03MH085679. This work was also funded by NIH grant R01 GM56203 (L.C.C.). J.M.A. acknowledges funding from NIH 5P01CA120964 and Dana-Farber/Harvard Cancer Center support grant NIH 5P30CA006516. M.G.V.H. acknowledges additional funding support from the Smith Family Foundation, the Burroughs Wellcome Fund, the Damon Runyon Cancer Research Foundation, the Stern family and the National Cancer Institute, including NIH 5P30CA1405141.

Author information

Authors and Affiliations

Authors

Contributions

D.A., Y.Y., W.J.I. and M.G.V.H. designed and coordinated the study. M.B.B., C.J.T., L.C.C., H.-W.P. and L.D. advised on various aspects of the study. J.-K.J., M.B.B., M.S., A.P.S., H.V., N.S., M.J.W., K.R.B., W.L., C.P.A., J.I., D.S.A. and C.J.T. designed and provided compounds. B.S.H., W.T., S.D. and H.-W.P. performed all structural studies. A.J. did additional structural analysis. H.Y., C.K., K.E.Y., K.K., F.G.S., S.J. and L.D. performed in vivo pharmacology and ADME studies. C.M.M., J.M.A. and G.S. did MS. M.H.H. reviewed pathology. D.A., Y.Y., W.J.I., K.R.M., B.P.F., K.D.C., S.M., T.M.K., C.K., S.Y.L., Z.R.J., S.M.D., H.R.C. and M.G.V.H. all performed experiments. D.A. and M.G.V.H. wrote the paper with substantial input from Y.Y. and W.J.I.

Corresponding author

Correspondence to Matthew G Vander Heiden.

Ethics declarations

Competing interests

L.C.C. is a founder, M.G.V.H. is a consultant and A.J., H.Y., C.K., K.E.Y., K.K., F.G.S., S.J. and L.D are employed by Agios Pharmaceuticals, a company seeking to target metabolic enzymes for cancer therapy.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 14188 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anastasiou, D., Yu, Y., Israelsen, W. et al. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat Chem Biol 8, 839–847 (2012). https://doi.org/10.1038/nchembio.1060

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1060

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing