Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Bacterial outer membrane evolution via sporulation?

The distinction between different cell-envelope architectures has defined much of our thinking about bacterial systematics, but the evolution of different envelope layers has been harder to understand. A recent publication focused on the non-model organism Acetonema longum provides important clues to the possible origin of the second membrane typical of Gram-negative bacteria.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Basic cell-envelope architecture of typical Gram-positive Firmicutes and Gram-negative Proteobacteria.
Figure 2: 23S ribosomal RNA–based phylogenetic tree showing the major bacterial phyla.
Figure 3: Simplified schemes of different modes of bacterial sporulation.
Figure 4: Variations in peptidoglycan structure.

References

  1. Sutcliffe, I.C. Trends Microbiol. 18, 464–470 (2010).

    Article  CAS  Google Scholar 

  2. Tocheva, E.I. et al. Cell 146, 799–812 (2011).

    Article  CAS  Google Scholar 

  3. Errington, J. Nat. Rev. Microbiol. 1, 117–126 (2003).

    Article  CAS  Google Scholar 

  4. Henriques, A.O. & Moran, C.P. Jr . Annu. Rev. Microbiol. 61, 555–588 (2007).

    Article  CAS  Google Scholar 

  5. Broder, D.H. & Pogliano, K. Cell 126, 917–928 (2006).

    Article  CAS  Google Scholar 

  6. Meyer, P., Gutierrez, J., Pogliano, K. & Dworkin, J. Mol. Microbiol. 76, 956–970 (2010).

    Article  CAS  Google Scholar 

  7. Vollmer, W. & Seligman, S.J. Trends Microbiol. 18, 59–66 (2010).

    Article  CAS  Google Scholar 

  8. Vollmer, W., Blanot, D. & de Pedro, M.A. FEMS Microbiol. Rev. 32, 149–167 (2008).

    Article  CAS  Google Scholar 

  9. Hayhurst, E.J., Kailas, L., Hobbs, J.K. & Foster, S.J. Proc. Natl. Acad. Sci. USA 105, 14603–14608 (2008).

    Article  CAS  Google Scholar 

  10. Vollmer, W. & Bertsche, U. Biochim. Biophys. Acta 1778, 1714–1734 (2008).

    Article  CAS  Google Scholar 

  11. Atrih, A., Zollner, P., Allmaier, G. & Foster, S.J. J. Bacteriol. 178, 6173–6183 (1996).

    Article  CAS  Google Scholar 

  12. Kaiser, D. Nat. Rev. Microbiol. 1, 45–54 (2003).

    Article  CAS  Google Scholar 

  13. Bui, N.K. et al. J. Bacteriol. 191, 494–505 (2009).

    Article  CAS  Google Scholar 

  14. Kleinschnitz, E.M. et al. Mol. Microbiol. 79, 1367–1379 (2011).

    Article  CAS  Google Scholar 

  15. Schleifer, K.H. & Kandler, O. Bacteriol. Rev. 36, 407–477 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kojima, S., Kaneko, J., Abe, N., Takatsuka, Y. & Kamio, Y. J. Bacteriol. 193, 2347–2350 (2011).

    Article  CAS  Google Scholar 

  17. Cava, F., de Pedro, M.A., Schwarz, H., Henne, A. & Berenguer, J. Mol. Microbiol. 52, 677–690 (2004).

    Article  CAS  Google Scholar 

  18. Bos, M.P., Robert, V. & Tommassen, J. Annu. Rev. Microbiol. 61, 191–214 (2007).

    Article  CAS  Google Scholar 

  19. Typas, A. et al. Cell 143, 1097–1109 (2010).

    Article  CAS  Google Scholar 

  20. Vollmer, W., Joris, B., Charlier, P. & Foster, S. FEMS Microbiol. Rev. 32, 259–286 (2008).

    Article  CAS  Google Scholar 

  21. Kleanthous, C. Nat. Rev. Microbiol. 8, 843–848 (2010).

    Article  CAS  Google Scholar 

  22. Russell, A.B. et al. Nature 475, 343–347 (2011).

    Article  CAS  Google Scholar 

  23. Gupta, R.S. Antonie van Leeuwenhoek 100, 171–182 (2011).

    Article  CAS  Google Scholar 

  24. Ludwig, W. & Klenk, H.-P. in Bergey's Manual of Systematic Bacteriology: The Proteobacteria. Part A, Introductory Essays 2nd edn, Vol. 2 (eds. Brenner, D.J., Krieg, N.R. & Staley, J.T.) 49–65 (Springer, 2005).

    Book  Google Scholar 

Download references

Acknowledgements

I thank J. Errington and K. Gerdes for critical comments. This work was supported by the Biotechnology and Biological Sciences Research Council (UK) and the European Commission (DIVINOCELL project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waldemar Vollmer.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vollmer, W. Bacterial outer membrane evolution via sporulation?. Nat Chem Biol 8, 14–18 (2012). https://doi.org/10.1038/nchembio.748

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.748

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing