Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanical modulation of catalytic power on F1-ATPase

Abstract

The conformational fluctuation of enzymes has a crucial role in reaction acceleration. However, the contribution to catalysis enhancement of individual substates with conformations far from the average conformation remains unclear. We studied the catalytic power of the rotary molecular motor F1-ATPase from thermophilic Bacillus PS3 as it was stalled in transient conformations far from a stable pausing angle. The rate constants of ATP binding and hydrolysis were determined as functions of the rotary angle. Both rates exponentially increase with rotation, revealing the molecular basis of positive cooperativity among three catalytic sites: elementary reaction steps are accelerated via the mechanical rotation driven by other reactions on neighboring catalytic sites. The rate enhancement induced by ATP binding upon rotation was greater than that brought about by hydrolysis, suggesting that the ATP binding step contributes more to torque generation than does the hydrolysis step. Additionally, 9% of the ATP-driven rotary step was supported by thermal diffusion, suggesting that acceleration of the ATP docking process occurs via thermally agitated conformational fluctuations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental setup and procedure for manipulation of the F1 motor.
Figure 2: Angle dependence of ATP binding.
Figure 3: Angle dependence of the hydrolysis step.
Figure 4: Probability density of rotary angle and rotary potential of pausing F1.
Figure 5: Modulation of kinetic parameters upon γ rotation.

Similar content being viewed by others

References

  1. Frauenfelder, H., Sligar, S.G. & Wolynes, P.G. The energy landscapes and motions of proteins. Science 254, 1598–1603 (1991).

    Article  CAS  Google Scholar 

  2. Karplus, M. & Kuriyan, J. Molecular dynamics and protein function. Proc. Natl. Acad. Sci. USA 102, 6679–6685 (2005).

    Article  CAS  Google Scholar 

  3. Henzler-Wildman, K. & Kern, D. Dynamic personalities of proteins. Nature 450, 964–972 (2007).

    Article  CAS  Google Scholar 

  4. Bruice, T.C. & Benkovic, S.J. Chemical basis for enzyme catalysis. Biochemistry 39, 6267–6274 (2000).

    Article  CAS  Google Scholar 

  5. Koshland, D.E. Jr. Ray, W.J. Jr. & Erwin, M.J. Protein structure and enzyme action. Fed. Proc. 17, 1145–1150 (1958).

    CAS  PubMed  Google Scholar 

  6. Monod, J., Wyman, J. & Changeux, J.P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–118 (1965).

    Article  CAS  Google Scholar 

  7. Csermely, P., Palotai, R. & Nussinov, R. Induced fit, conformational selection and independent dynamic segments: an extended view of binding events. Trends Biochem. Sci. 35, 539–546 (2010).

    Article  CAS  Google Scholar 

  8. Boyer, P.D. The ATP synthase—a splendid molecular machine. Annu. Rev. Biochem. 66, 717–749 (1997).

    Article  CAS  Google Scholar 

  9. Cross, R.L. The rotary binding change mechanism of ATP synthases. Biochim. Biophys. Acta 1458, 270–275 (2000).

    Article  CAS  Google Scholar 

  10. Yoshida, M., Muneyuki, E. & Hisabori, T. ATP synthase—a marvellous rotary engine of the cell. Nat. Rev. Mol. Cell Biol. 2, 669–677 (2001).

    Article  CAS  Google Scholar 

  11. Senior, A.E., Nadanaciva, S. & Weber, J. The molecular mechanism of ATP synthesis by F1Fo-ATP synthase. Biochim. Biophys. Acta 1553, 188–211 (2002).

    Article  CAS  Google Scholar 

  12. Noji, H., Yasuda, R., Yoshida, M. & Kinosita, K. Jr. Direct observation of the rotation of F1-ATPase. Nature 386, 299–302 (1997).

    Article  CAS  Google Scholar 

  13. Abrahams, J.P., Leslie, A.G., Lutter, R. & Walker, J.E. Structure at 2.8-Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994).

    Article  CAS  Google Scholar 

  14. Yasuda, R., Noji, H., Kinosita, K. Jr. & Yoshida, M. F1-ATPase is a highly efficient molecular motor that rotates with discrete 120 degree steps. Cell 93, 1117–1124 (1998).

    Article  CAS  Google Scholar 

  15. Yasuda, R., Noji, H., Yoshida, M., Kinosita, K. Jr. & Itoh, H. Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410, 898–904 (2001).

    Article  CAS  Google Scholar 

  16. Adachi, K. et al. Coupling of rotation and catalysis in F1-ATPase revealed by single-molecule imaging and manipulation. Cell 130, 309–321 (2007).

    Article  CAS  Google Scholar 

  17. Shimabukuro, K. et al. Catalysis and rotation of F1 motor: cleavage of ATP at the catalytic site occurs in 1 ms before 40 degree substep rotation. Proc. Natl. Acad. Sci. USA 100, 14731–14736 (2003).

    Article  CAS  Google Scholar 

  18. Watanabe, R., Iino, R. & Noji, H. Phosphate release in F1-ATPase catalytic cycle follows ADP release. Nat. Chem. Biol. 6, 814–820 (2010).

    Article  CAS  Google Scholar 

  19. Itoh, H. et al. Mechanically driven ATP synthesis by F1-ATPase. Nature 427, 465–468 (2004).

    Article  CAS  Google Scholar 

  20. Rondelez, Y. et al. Highly coupled ATP synthesis by F1-ATPase single molecules. Nature 433, 773–777 (2005).

    Article  CAS  Google Scholar 

  21. Carter, N.J. & Cross, R.A. Mechanics of the kinesin step. Nature 435, 308–312 (2005).

    Article  CAS  Google Scholar 

  22. Gebhardt, J.C., Clemen, A.E., Jaud, J. & Rief, M. Myosin-V is a mechanical ratchet. Proc. Natl. Acad. Sci. USA 103, 8680–8685 (2006).

    Article  CAS  Google Scholar 

  23. Gennerich, A., Carter, A.P., Reck-Peterson, S.L. & Vale, R.D. Force-induced bidirectional stepping of cytoplasmic dynein. Cell 131, 952–965 (2007).

    Article  CAS  Google Scholar 

  24. Iko, Y., Tabata, K.V., Sakakihara, S., Nakashima, T. & Noji, H. Acceleration of the ATP-binding rate of F1-ATPase by forcible forward rotation. FEBS Lett. 583, 3187–3191 (2009).

    Article  CAS  Google Scholar 

  25. Watanabe, R., Iino, R., Shimabukuro, K., Yoshida, M. & Noji, H. Temperature-sensitive reaction intermediate of F1-ATPase. EMBO Rep. 9, 84–90 (2008).

    Article  CAS  Google Scholar 

  26. Spetzler, D. et al. Microsecond time scale rotation measurements of single F1-ATPase molecules. Biochemistry 45, 3117–3124 (2006).

    Article  CAS  Google Scholar 

  27. Omote, H. et al. The γ-subunit rotation and torque generation in F1-ATPase from wild-type or uncoupled mutant Escherichia coli. Proc. Natl. Acad. Sci. USA 96, 7780–7784 (1999).

    Article  CAS  Google Scholar 

  28. Hirono-Hara, Y., Ishizuka, K., Kinosita, K. Jr., Yoshida, M. & Noji, H. Activation of pausing F1 motor by external force. Proc. Natl. Acad. Sci. USA 102, 4288–4293 (2005).

    Article  CAS  Google Scholar 

  29. Hirono-Hara, Y. et al. Pause and rotation of F1-ATPase during catalysis. Proc. Natl. Acad. Sci. USA 98, 13649–13654 (2001).

    Article  CAS  Google Scholar 

  30. Sakaki, N. et al. One rotary mechanism for F1-ATPase over ATP concentrations from millimolar down to nanomolar. Biophys. J. 88, 2047–2056 (2005).

    Article  CAS  Google Scholar 

  31. Noji, H. et al. Purine but not pyrimidine nucleotides support rotation of F1-ATPase. J. Biol. Chem. 276, 25480–25486 (2001).

    Article  CAS  Google Scholar 

  32. Okuno, D., Iino, R. & Noji, H. Stiffness of γ subunit of F1-ATPase. Eur. Biophys. J. 39, 1589–1596 (2010).

    Article  CAS  Google Scholar 

  33. Sielaff, H. et al. Domain compliance and elastic power transmission in rotary FoF1-ATPase. Proc. Natl. Acad. Sci. USA 105, 17760–17765 (2008).

    Article  CAS  Google Scholar 

  34. Uemura, S. & Ishiwata, S. Loading direction regulates the affinity of ADP for kinesin. Nat. Struct. Biol. 10, 308–311 (2003).

    Article  CAS  Google Scholar 

  35. Henzler-Wildman, K.A. et al. A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature 450, 913–916 (2007).

    Article  CAS  Google Scholar 

  36. Ikeguchi, M., Ueno, J., Sato, M. & Kidera, A. Protein structural change upon ligand binding: linear response theory. Phys. Rev. Lett. 94, 078102 (2005).

    Article  Google Scholar 

  37. Shimabukuro, K., Muneyuki, E. & Yoshida, M. An alternative reaction pathway of F1-ATPase suggested by rotation without 80 degrees/40 degrees substeps of a sluggish mutant at low ATP. Biophys. J. 90, 1028–1032 (2006).

    Article  CAS  Google Scholar 

  38. von Ballmoos, C., Cook, G.M. & Dimroth, P. Unique rotary ATP synthase and its biological diversity. Annu. Rev. Biophys. 37, 43–64 (2008).

    Article  CAS  Google Scholar 

  39. Boyer, P.D., Cross, R.L. & Momsen, W. A new concept for energy coupling in oxidative phosphorylation based on a molecular explanation of the oxygen exchange reactions. Proc. Natl. Acad. Sci. USA 70, 2837–2839 (1973).

    Article  CAS  Google Scholar 

  40. Iino, R., Hasegawa, R., Tabata, K.V. & Noji, H. Mechanism of inhibition by C-terminal alpha-helices of the epsilon subunit of Escherichia coli FoF1-ATP synthase. J. Biol. Chem. 284, 17457–17464 (2009).

    Article  CAS  Google Scholar 

  41. Kinosita, K. Jr., Adachi, K. & Itoh, H. Rotation of F1-ATPase: how an ATP-driven molecular machine may work. Annu. Rev. Biophys. Biomol. Struct. 33, 245–268 (2004).

    Article  CAS  Google Scholar 

  42. Nishizaka, T. et al. Chemomechanical coupling in F1-ATPase revealed by simultaneous observation of nucleotide kinetics and rotation. Nat. Struct. Mol. Biol. 11, 142–148 (2004).

    Article  CAS  Google Scholar 

  43. Weber, J., Bowman, C. & Senior, A.E. Specific tryptophan substitution in catalytic sites of Escherichia coli F1-ATPase allows differentiation between bound substrate ATP and product ADP in steady-state catalysis. J. Biol. Chem. 271, 18711–18718 (1996).

    Article  CAS  Google Scholar 

  44. Shimo-Kon, R. et al. Chemo-mechanical coupling in F1-ATPase revealed by catalytic site occupancy during catalysis. Biophys. J. 98, 1227–1236 (2010).

    Article  CAS  Google Scholar 

  45. Senior, A.E. ATP synthase: motoring to the finish line. Cell 130, 220–221 (2007).

    Article  CAS  Google Scholar 

  46. Uchihashi, T., Iino, R., Ando, T. & Noji, H. High-speed atomic force microscopy reveals rotary catalysis of rotorless F1-ATPase. Science 333, 755–758 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all members of the Noji laboratory. This work was partially supported by a Grant-in-Aid for Scientific Research (no. 18074005) to H.N. and by a Special Education and Research Expenses grant to H.N. from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Contributions

R.W., D.O. and S.S. designed and performed experiments and analyzed data; K.S. gave technical support; R.I. and M.Y. gave technical support and conceptual advice; H.N. designed experiments, conceived the idea behind this paper and wrote this paper with R.W. and R.I.

Corresponding author

Correspondence to Hiroyuki Noji.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 935 kb)

Supplementary Movie 1

Supplementary Movie 1 (MOV 1066 kb)

Supplementary Movie 2

Supplementary Movie 2 (MOV 1883 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, R., Okuno, D., Sakakihara, S. et al. Mechanical modulation of catalytic power on F1-ATPase. Nat Chem Biol 8, 86–92 (2012). https://doi.org/10.1038/nchembio.715

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.715

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing