Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Chemistry and biology of reactive oxygen species in signaling or stress responses

Abstract

Reactive oxygen species (ROS) are a family of molecules that are continuously generated, transformed and consumed in all living organisms as a consequence of aerobic life. The traditional view of these reactive oxygen metabolites is one of oxidative stress and damage that leads to decline of tissue and organ systems in aging and disease. However, emerging data show that ROS produced in certain situations can also contribute to physiology and increased fitness. This Perspective provides a focused discussion on what factors lead ROS molecules to become signal and/or stress agents, highlighting how increasing knowledge of the underlying chemistry of ROS can lead to advances in understanding their disparate contributions to biology. An important facet of this emerging area at the chemistry-biology interface is the development of new tools to study these small molecules and their reactivity in complex biological systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reactions of primary ROS with functional groups on proteins.
Figure 2: Potential layers of regulation for membrane-localized H2O2 signaling.
Figure 3: ROS signaling in physiology.
Figure 4: Chemical tools to study redox biology.

Similar content being viewed by others

References

  1. Blake, C.C. et al. Structure of hen egg-white lysozyme. A three-dimensional Fourier synthesis at 2 Angstrom resolution. Nature 206, 757–761 (1965).

    CAS  PubMed  Google Scholar 

  2. Barnham, K.J., Masters, C.L. & Bush, A.I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 3, 205–214 (2004).

    CAS  PubMed  Google Scholar 

  3. Finkel, T., Serrano, M. & Blasco, M.A. The common biology of cancer and ageing. Nature 448, 767–774 (2007).

    CAS  PubMed  Google Scholar 

  4. Lambeth, J.D. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4, 181–189 (2004).

    CAS  PubMed  Google Scholar 

  5. Rhee, S.G. H2O2, a necessary evil for cell signaling. Science 312, 1882–1883 (2006).

    Article  PubMed  Google Scholar 

  6. Stone, J.R. & Yang, S. Hydrogen peroxide: a signaling messenger. Antioxid. Redox Signal. 8, 243–270 (2006).

    CAS  PubMed  Google Scholar 

  7. Veal, E.A., Day, A.M. & Morgan, B.A. Hydrogen peroxide sensing and signaling. Mol. Cell 26, 1–14 (2007).

    CAS  PubMed  Google Scholar 

  8. D'Autréaux, B. & Toledano, M.B. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8, 813–824 (2007).

    PubMed  Google Scholar 

  9. Paulsen, C.E. & Carroll, K.S. Orchestrating redox signaling networks through regulatory cysteine switches. ACS Chem. Biol. 5, 47–62 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Cochemé, H.M. et al. Measurement of H2O2 within living Drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix. Cell Metab. 13, 340–350 (2011).

    PubMed  PubMed Central  Google Scholar 

  11. Ignarro, L.J. Nitric oxide as a unique signaling molecule in the vascular system: a historical overview. J. Physiol. Pharmacol. 53, 503–514 (2002).

    CAS  PubMed  Google Scholar 

  12. Bryan, N.S., Bian, K. & Murad, F. Discovery of the nitric oxide signaling pathway and targets for drug development. Front. Biosci. 14, 1–18 (2009).

    CAS  Google Scholar 

  13. Szabó, C., Ischiropoulos, H. & Radi, R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat. Rev. Drug Discov. 6, 662–680 (2007).

    PubMed  Google Scholar 

  14. Winterbourn, C.C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 4, 278–286 (2008).

    CAS  PubMed  Google Scholar 

  15. del Río, L.A., Sandalio, L.M., Palma, J.M., Bueno, P. & Corpas, F.J. Metabolism of oxygen radicals in peroxisomes and cellular implications. Free Radic. Biol. Med. 13, 557–580 (1992).

    PubMed  Google Scholar 

  16. Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J. 417, 1–13 (2009).

    CAS  PubMed  Google Scholar 

  17. Schriner, S.E. et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308, 1909–1911 (2005).

    CAS  PubMed  Google Scholar 

  18. Lee, H.Y. et al. Targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function and insulin resistance. Cell Metab. 12, 668–674 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Avshalumov, M.V. & Rice, M.E. Activation of ATP-sensitive K+ (KATP) channels by H2O2 underlies glutamate-dependent inhibition of striatal dopamine release. Proc. Natl. Acad. Sci. USA 100, 11729–11734 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bao, L. et al. Mitochondria are the source of hydrogen peroxide for dynamic brain-cell signaling. J. Neurosci. 29, 9002–9010 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Giorgio, M. et al. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 122, 221–233 (2005).

    CAS  PubMed  Google Scholar 

  22. Migliaccio, E. et al. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402, 309–313 (1999).

    CAS  PubMed  Google Scholar 

  23. Veeramani, S., Yuan, T.C., Lin, F.F. & Lin, M.F. Mitochondrial redox signaling by p66Shc is involved in regulating androgenic growth stimulation of human prostate cancer cells. Oncogene 27, 5057–5068 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gross, E. et al. Generating disulfides enzymatically: reaction products and electron acceptors of the endoplasmic reticulum thiol oxidase Ero1p. Proc. Natl. Acad. Sci. USA 103, 299–304 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen, K., Kirber, M.T., Xiao, H., Yang, Y. & Keaney, J.F. Jr. Regulation of ROS signal transduction by NADPH oxidase 4 localization. J. Cell Biol. 181, 1129–1139 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Suh, Y.A. et al. Cell transformation by the superoxide-generating oxidase Mox1. Nature 401, 79–82 (1999).

    CAS  PubMed  Google Scholar 

  27. Geiszt, M., Kopp, J.B., Várnai, P. & Leto, T.L. Identification of Renox, an NAD(P)H oxidase in kidney. Proc. Natl. Acad. Sci. USA 97, 8010–8014 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bedard, K. & Krause, K.H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87, 245–313 (2007).

    CAS  PubMed  Google Scholar 

  29. Sundaresan, M., Yu, Z.X., Ferrans, V.J., Irani, K. & Finkel, T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270, 296–299 (1995).

    CAS  PubMed  Google Scholar 

  30. Peskin, A.V. et al. The high reactivity of peroxiredoxin 2 with H2O2 is not reflected in its reaction with other oxidants and thiol reagents. J. Biol. Chem. 282, 11885–11892 (2007).

    CAS  PubMed  Google Scholar 

  31. Denu, J.M. & Tanner, K.G. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry 37, 5633–5642 (1998).

    CAS  PubMed  Google Scholar 

  32. Salmeen, A. et al. Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature 423, 769–773 (2003).

    CAS  PubMed  Google Scholar 

  33. van Montfort, R.L., Congreve, M., Tisi, D., Carr, R. & Jhoti, H. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 423, 773–777 (2003).

    CAS  PubMed  Google Scholar 

  34. Biteau, B., Labarre, J. & Toledano, M.B. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425, 980–984 (2003).

    CAS  PubMed  Google Scholar 

  35. Chang, T.S. et al. Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine. J. Biol. Chem. 279, 50994–51001 (2004).

    CAS  PubMed  Google Scholar 

  36. Kwon, J. et al. Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc. Natl. Acad. Sci. USA 101, 16419–16424 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wood, M.J., Storz, G. & Tjandra, N. Structural basis for redox regulation of Yap1 transcription factor localization. Nature 430, 917–921 (2004).

    CAS  PubMed  Google Scholar 

  38. Dansen, T.B. et al. Redox-sensitive cysteines bridge p300/CBP-mediated acetylation and FoxO4 activity. Nat. Chem. Biol. 5, 664–672 (2009).

    CAS  PubMed  Google Scholar 

  39. Fu, X., Kassim, S.Y., Parks, W.C. & Heinecke, J.W. Hypochlorous acid oxygenates the cysteine switch domain of pro-matrilysin (MMP-7). A mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase. J. Biol. Chem. 276, 41279–41287 (2001).

    CAS  PubMed  Google Scholar 

  40. Ago, T. et al. A redox-dependent pathway for regulating class II HDACs and cardiac hypertrophy. Cell 133, 978–993 (2008).

    CAS  PubMed  Google Scholar 

  41. Stadtman, E.R. Protein oxidation and aging. Free Radic. Res. 40, 1250–1258 (2006).

    CAS  PubMed  Google Scholar 

  42. Winterbourn, C.C. & Kettle, A.J. Biomarkers of myeloperoxidase-derived hypochlorous acid. Free Radic. Biol. Med. 29, 403–409 (2000).

    CAS  PubMed  Google Scholar 

  43. Shao, B., Oda, M.N., Oram, J.F. & Heinecke, J.W. Myeloperoxidase: an oxidative pathway for generating dysfunctional high-density lipoprotein. Chem. Res. Toxicol. 23, 447–454 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Thomson, E. et al. Identifying peroxidases and their oxidants in the early pathology of cystic fibrosis. Free Radic. Biol. Med. 49, 1354–1360 (2010).

    CAS  PubMed  Google Scholar 

  45. Moskovitz, J. et al. Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals. Proc. Natl. Acad. Sci. USA 98, 12920–12925 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee, J.W. & Helmann, J.D. The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation. Nature 440, 363–367 (2006).

    CAS  PubMed  Google Scholar 

  47. Gaudu, P. & Weiss, B. SoxR, a [2Fe-2S] transcription factor, is active only in its oxidized form. Proc. Natl. Acad. Sci. USA 93, 10094–10098 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hilenski, L.L., Clempus, R.E., Quinn, M.T., Lambeth, J.D. & Griendling, K.K. Distinct subcellular localizations of Nox1 and Nox4 in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 24, 677–683 (2004).

    CAS  PubMed  Google Scholar 

  49. Ushio-Fukai, M. Localizing NADPH oxidase–derived ROS. Sci. STKE 2006, re8 (2006).

    PubMed  Google Scholar 

  50. Mishina, N.M. et al. Does cellular hydrogen peroxide diffuse or act locally? Antioxid. Redox Signal. 14, 1–7 (2011).

    CAS  PubMed  Google Scholar 

  51. Wu, R.F., Ma, Z., Liu, Z. & Terada, L.S. Nox4-derived H2O2 mediates endoplasmic reticulum signaling through local Ras activation. Mol. Cell. Biol. 30, 3553–3568 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wood, Z.A., Poole, L.B. & Karplus, P.A. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300, 650–653 (2003).

    CAS  PubMed  Google Scholar 

  53. Woo, H.A. et al. Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science 300, 653–656 (2003).

    CAS  PubMed  Google Scholar 

  54. Woo, H.A. et al. Inactivation of Peroxiredoxin I by phosphorylation allows localized H2O2 accumulation for cell signaling. Cell 140, 517–528 (2010).

    CAS  PubMed  Google Scholar 

  55. Bienert, G.P. et al. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem. 282, 1183–1192 (2007).

    CAS  PubMed  Google Scholar 

  56. Dynowski, M., Schaaf, G., Loque, D., Moran, O. & Ludewig, U. Plant plasma membrane water channels conduct the signalling molecule H2O2 . Biochem. J. 414, 53–61 (2008).

    CAS  PubMed  Google Scholar 

  57. Miller, E.W., Dickinson, B.C. & Chang, C.J. Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc. Natl. Acad. Sci. USA 107, 15681–15686 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim, J.S., Huang, T.Y. & Bokoch, G.M. Reactive oxygen species regulate a slingshot-cofilin activation pathway. Mol. Biol. Cell 20, 2650–2660 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Gianni, D., Taulet, N., DerMardirossian, C. & Bokoch, G.M. c-Src-mediated phosphorylation of NoxA1 and Tks4 induces the reactive oxygen species (ROS)-dependent formation of functional invadopodia in human colon cancer cells. Mol. Biol. Cell 21, 4287–4298 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Niethammer, P., Grabher, C., Look, A.T. & Mitchison, T.J. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459, 996–999 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. O'Neill, J.S. & Reddy, A.B. Circadian clocks in human red blood cells. Nature 469, 498–503 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. O'Neill, J.S. et al. Circadian rhythms persist without transcription in a eukaryote. Nature 469, 554–558 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Dickinson, B.C., Peltier, J., Stone, D., Schaffer, D.V. & Chang, C.J. Nox2 redox signaling maintains essential cell populations in the brain. Nat. Chem. Biol. 7, 106–112 (2011).

    CAS  PubMed  Google Scholar 

  64. Le Belle, J.E. et al. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 8, 59–71 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Hempel, S.L., Buettner, G.R., O'Malley, Y.Q., Wessels, D.A. & Flaherty, D.M. Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2′,7′-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2′,7′-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radic. Biol. Med. 27, 146–159 (1999).

    CAS  PubMed  Google Scholar 

  66. Ostergaard, H., Henriksen, A., Hansen, F.G. & Winther, J.R. Shedding light on disulfide bond formation: engineering a redox switch in green fluorescent protein. EMBO J. 20, 5853–5862 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Hanson, G.T. et al. Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J. Biol. Chem. 279, 13044–13053 (2004).

    CAS  PubMed  Google Scholar 

  68. Sasaki, E. et al. Highly sensitive near-infrared fluorescent probes for nitric oxide and their application to isolated organs. J. Am. Chem. Soc. 127, 3684–3685 (2005).

    CAS  PubMed  Google Scholar 

  69. Lim, M.H., Xu, D. & Lippard, S.J. Visualization of nitric oxide in living cells by a copper-based fluorescent probe. Nat. Chem. Biol. 2, 375–380 (2006).

    CAS  PubMed  Google Scholar 

  70. Yang, D., Wang, H.L., Sun, Z.N., Chung, N.W. & Shen, J.G. A highly selective fluorescent probe for the detection and imaging of peroxynitrite in living cells. J. Am. Chem. Soc. 128, 6004–6005 (2006).

    CAS  PubMed  Google Scholar 

  71. Robinson, K.M. et al. Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proc. Natl. Acad. Sci. USA 103, 15038–15043 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kenmoku, S., Urano, Y., Kojima, H. & Nagano, T. Development of a highly specific rhodamine-based fluorescence probe for hypochlorous acid and its application to real-time imaging of phagocytosis. J. Am. Chem. Soc. 129, 7313–7318 (2007).

    CAS  PubMed  Google Scholar 

  73. Belousov, V.V. et al. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Methods 3, 281–286 (2006).

    CAS  PubMed  Google Scholar 

  74. Miller, E.W., Bian, S.X. & Chang, C.J. A fluorescent sensor for imaging reversible redox cycles in living cells. J. Am. Chem. Soc. 129, 3458–3459 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Robinson, K.M., Janes, M.S. & Beckman, J.S. The selective detection of mitochondrial superoxide by live cell imaging. Nat. Protoc. 3, 941–947 2008).

    CAS  PubMed  Google Scholar 

  76. Gutscher, M. et al. Real-time imaging of the intracellular glutathione redox potential. Nat. Methods 5, 553–559 (2008).

    CAS  PubMed  Google Scholar 

  77. Wang, W. et al. Superoxide flashes in single mitochondria. Cell 134, 279–290 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Garner, A.L. et al. Specific fluorogenic probes for ozone in biological and atmospheric samples. Nature Chemistry 1, 316–321 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Dickinson, B.C., Srikun, D. & Chang, C.J. Mitochondrial-targeted fluorescent probes for reactive oxygen species. Curr. Opin. Chem. Biol. 14, 50–56 (2010).

    CAS  PubMed  Google Scholar 

  80. Chang, M.C., Pralle, A., Isacoff, E.Y. & Chang, C.J. A selective, cell-permeable optical probe for hydrogen peroxide in living cells. J. Am. Chem. Soc. 126, 15392–15393 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Miller, E.W., Albers, A.E., Pralle, A., Isacoff, E.Y. & Chang, C.J. Boronate-based fluorescent probes for imaging cellular hydrogen peroxide. J. Am. Chem. Soc. 127, 16652–16659 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Miller, E.W., Tulyanthan, O., Isacoff, E.Y. & Chang, C.J. Molecular imaging of hydrogen peroxide produced for cell signaling. Nat. Chem. Biol. 3, 263–267 (2007).

    CAS  PubMed  Google Scholar 

  83. Dickinson, B.C. & Chang, C.J. A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. J. Am. Chem. Soc. 130, 9638–9639 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Srikun, D., Miller, E.W., Domaille, D.W. & Chang, C.J. An ICT-based approach to ratiometric fluorescence imaging of hydrogen peroxide produced in living cells. J. Am. Chem. Soc. 130, 4596–4597 (2008).

    CAS  PubMed  Google Scholar 

  85. Dickinson, B.C., Huynh, C. & Chang, C.J. A palette of fluorescent probes with varying emission colors for imaging hydrogen peroxide signaling in living cells. J. Am. Chem. Soc. 132, 5906–5915 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Lippert, A.R., Keshari, K.R., Kurhanewicz, J. & Chang, C.J. A hydrogen peroxide-responsive hyperpolarized (13)c MRI contrast agent. J. Am. Chem. Soc. 133, 3776–3779 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Srikun, D., Albers, A.E. & Chang, C.J. A dendrimer-based platform for simultaneous dual fluorescence imaging of hydrogen peroxide and pH gradients produced in living cells. Chem. Sci. 2, 1156–1165 (2011).

    CAS  Google Scholar 

  88. Lee, D. et al. In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles. Nat. Mater. 6, 765–769 (2007).

    CAS  PubMed  Google Scholar 

  89. Van de Bittner, G.C., Dubikovskaya, E.A., Bertozzi, C.R. & Chang, C.J. In vivo imaging of hydrogen peroxide production in a murine tumor model with a chemoselective bioluminescent reporter. Proc. Natl. Acad. Sci. USA 107, 21316–21321 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Haskew-Layton, R.E. et al. Controlled enzymatic production of astrocytic hydrogen peroxide protects neurons from oxidative stress via an Nrf2-independent pathway. Proc. Natl. Acad. Sci. USA 107, 17385–17390 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Mahon, K.P. et al. Deconvolution of the cellular oxidative stress response with organelle-specific peptide conjugates. Chem. Biol. 14, 923–930 (2007).

    CAS  PubMed  Google Scholar 

  92. Miller, E.W. et al. Light-activated regulation of cofilin dynamics using a photocaged hydrogen peroxide generator. J. Am. Chem. Soc. published online, doi: 10.1021/ja107783j (15 November 2010).

  93. Winter, J., Ilbert, M., Graf, P.C., Ozcelik, D. & Jakob, U. Bleach activates a redox-regulated chaperone by oxidative protein unfolding. Cell 135, 691–701 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Leichert, L.I. et al. Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. Proc. Natl. Acad. Sci. USA 105, 8197–8202 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Fomenko, D.E., Xing, W., Adair, B.M., Thomas, D.J. & Gladyshev, V.N. High-throughput identification of catalytic redox-active cysteine residues. Science 315, 387–389 (2007).

    CAS  PubMed  Google Scholar 

  96. Weerapana, E. et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468, 790–795 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Poole, L.B. et al. Fluorescent and affinity-based tools to detect cysteine sulfenic acid formation in proteins. Bioconjug. Chem. 18, 2004–2017 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Leonard, S.E., Reddie, K.G. & Carroll, K.S. Mining the thiol proteome for sulfenic acid modifications reveals new targets for oxidation in cells. ACS Chem. Biol. 4, 783–799 (2009).

    CAS  PubMed  Google Scholar 

  99. Seo, Y.H. & Carroll, K.S. Quantification of protein sulfenic acid modifications using isotope-coded dimedone and iododimedone. Angew. Chem. Int. Edn Engl. 50, 1342–1345 (2011).

    CAS  Google Scholar 

  100. Seo, Y.H. & Carroll, K.S. Profiling protein thiol oxidation in tumor cells using sulfenic acid-specific antibodies. Proc. Natl. Acad. Sci. USA 106, 16163–16168 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Packard Foundation, Amgen, Astra Zeneca and Novartis and the US National Institutes of Health (NIH; GM 79465) for providing funding for this work. C.J.C. is an Investigator with the Howard Hughes Medical Institute. B.C.D. was partially supported by a Chemical Biology Training Grant from the NIH (T32 GM066698). Due to space limitations, we apologize if we inadvertently omitted citations of major contributions to this area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J Chang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickinson, B., Chang, C. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat Chem Biol 7, 504–511 (2011). https://doi.org/10.1038/nchembio.607

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.607

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing