Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Discovery of selective bioactive small molecules by targeting an RNA dynamic ensemble

Abstract

Current approaches used to identify protein-binding small molecules are not suited for identifying small molecules that can bind emerging RNA drug targets. By docking small molecules onto an RNA dynamic ensemble constructed by combining NMR spectroscopy and computational molecular dynamics, we virtually screened small molecules that target the entire structure landscape of the transactivation response element (TAR) from HIV type 1 (HIV-1). We quantitatively predict binding energies for small molecules that bind different RNA conformations and report the de novo discovery of six compounds that bind TAR with high affinity and inhibit its interaction with a Tat peptide in vitro (Ki values of 710 nM–169 μM). One compound binds HIV-1 TAR with marked selectivity and inhibits Tat-mediated activation of the HIV-1 long terminal repeat by 81% in T-cell lines and HIV replication in an HIV-1 indicator cell line (IC50 23.1 μM).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Virtually screening RNA dynamic structure ensemble.
Figure 2: Analysis of small-molecule binding specificity.
Figure 3: NMR site-specific characterization of TAR-small molecule binding modes.
Figure 4: Netilmicin specifically inhibits Tat-mediated transactivation and HIV-1 replication.

Similar content being viewed by others

References

  1. Cooper, T.A., Wan, L. & Dreyfuss, G. RNA and disease. Cell 136, 777–793 (2009).

    Article  CAS  Google Scholar 

  2. Parsons, J. et al. Conformational inhibition of the hepatitis C virus internal ribosome entry site RNA. Nat. Chem. Biol. 5, 823–825 (2009).

    Article  CAS  Google Scholar 

  3. Blount, K.F. & Breaker, R.R. Riboswitches as antibacterial drug targets. Nat. Biotechnol. 24, 1558–1564 (2006).

    Article  CAS  Google Scholar 

  4. Thomas, J.R. & Hergenrother, P.J. Targeting RNA with small molecules. Chem. Rev. 108, 1171–1224 (2008).

    Article  CAS  Google Scholar 

  5. Kuntz, I.D. Structure-based strategies for drug design and discovery. Science 257, 1078–1082 (1992).

    Article  CAS  Google Scholar 

  6. Filikov, A.V. et al. Identification of ligands for RNA targets via structure-based virtual screening: HIV-1 TAR. J. Comput. Aided Mol. Des. 14, 593–610 (2000).

    Article  CAS  Google Scholar 

  7. Hermann, T. Rational ligand design for RNA: the role of static structure and conformational flexibility in target recognition. Biochimie 84, 869–875 (2002).

    Article  CAS  Google Scholar 

  8. Cruz, J.A. & Westhof, E. The dynamic landscapes of RNA architecture. Cell 136, 604–609 (2009).

    Article  CAS  Google Scholar 

  9. Fulle, S. & Gohlke, H. Molecular recognition of RNA: challenges for modelling interactions and plasticity. J. Mol. Recognit. 23, 220–231 (2010).

    CAS  PubMed  Google Scholar 

  10. Zhang, Q., Sun, X., Watt, E.D. & Al-Hashimi, H.M. Resolving the motional modes that code for RNA adaptation. Science 311, 653–656 (2006).

    Article  CAS  Google Scholar 

  11. Frank, A.T., Stelzer, A.C., Al-Hashimi, H.M. & Andricioaei, I. Constructing RNA dynamical ensembles by combining MD and motionally decoupled NMR RDCs: new insights into RNA dynamics and adaptive ligand recognition. Nucleic Acids Res. 37, 3670–3679 (2009).

    Article  CAS  Google Scholar 

  12. Puglisi, J.D., Tan, R., Calnan, B.J., Frankel, A.D. & Williamson, J.R. Conformation of the TAR RNA-arginine complex by NMR spectroscopy. Science 257, 76–80 (1992).

    Article  CAS  Google Scholar 

  13. Williamson, J.R. Induced fit in RNA-protein recognition. Nat. Struct. Biol. 7, 834–837 (2000).

    Article  CAS  Google Scholar 

  14. Leulliot, N. & Varani, G. Current topics in RNA-protein recognition: Control of specificity and biological function through induced fit and conformational capture. Biochemistry 40, 7947–7956 (2001).

    Article  CAS  Google Scholar 

  15. Zhang, Q., Stelzer, A.C., Fisher, C.K. & Al-Hashimi, H.M. Visualizing spatially correlated dynamics that directs RNA conformational transitions. Nature 450, 1263–1267 (2007).

    Article  CAS  Google Scholar 

  16. Latham, M.P., Zimmermann, G.R. & Pardi, A. NMR chemical exchange as a probe for ligand-binding kinetics in a theophylline-binding RNA aptamer. J. Am. Chem. Soc. 131, 5052–5053 (2009).

    Article  CAS  Google Scholar 

  17. Vaiana, A.C. & Sanbonmatsu, K.Y. Stochastic gating and drug-ribosome interactions. J. Mol. Biol. 386, 648–661 (2009).

    Article  CAS  Google Scholar 

  18. Chen, Y., Campbell, S.L. & Dokholyan, N.V. Deciphering protein dynamics from NMR data using explicit structure sampling and selection. Biophys. J. 93, 2300–2306 (2007).

    Article  CAS  Google Scholar 

  19. Clore, G.M. & Schwieters, C.D. Amplitudes of protein backbone dynamics and correlated motions in a small alpha/beta protein: correspondence of dipolar coupling and heteronuclear relaxation measurements. Biochemistry 43, 10678–10691 (2004).

    Article  CAS  Google Scholar 

  20. Abagyan, R., Totrov, M. & Kuznetsov, D. ICM—a new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation. J. Comput. Chem. 15, 488–506 (1994).

    Article  CAS  Google Scholar 

  21. Lang, P.T. et al. DOCK 6: combining techniques to model RNA-small molecule complexes. RNA 15, 1219–1230 (2009).

    Article  CAS  Google Scholar 

  22. Cheng, T., Li, X., Li, Y., Liu, Z. & Wang, R. Comparative assessment of scoring functions on a diverse test set. J. Chem. Inf. Model. 49, 1079–1093 (2009).

    Article  CAS  Google Scholar 

  23. Guilbert, C. & James, T.L. Docking to RNA via root-mean-square-deviation-driven energy minimization with flexible ligands and flexible targets. J. Chem. Inf. Model. 48, 1257–1268 (2008).

    Article  CAS  Google Scholar 

  24. Ippolito, J.A. & Steitz, T.A. A 1.3-Å resolution crystal structure of the HIV-1 trans-activation response region RNA stem reveals a metal ion-dependent bulge conformation. Proc. Natl. Acad. Sci. USA 95, 9819–9824 (1998).

    Article  CAS  Google Scholar 

  25. Aboul-ela, F., Karn, J. & Varani, G. Structure of HIV-1 TAR RNA in the absence of ligands reveals a novel conformation of the trinucleotide bulge. Nucleic Acids Res. 24, 3974–3981 (1996).

    Article  CAS  Google Scholar 

  26. Yang, M. Discoveries of Tat-TAR interaction inhibitors for HIV-1. Curr. Drug Targets Infect. Disord. 5, 433–444 (2005).

    Article  CAS  Google Scholar 

  27. Bradrick, T.D. & Marino, J.P. Ligand-induced changes in 2-aminopurine fluorescence as a probe for small molecule binding to HIV-1 TAR RNA. RNA 10, 1459–1468 (2004).

    Article  CAS  Google Scholar 

  28. Matsumoto, C., Hamasaki, K., Mihara, H. & Ueno, A. A high-throughput screening utilizing intramolecular fluorescence resonance energy transfer for the discovery of the molecules that bind HIV-1 TAR RNA specifically. Bioorg. Med. Chem. Lett. 10, 1857–1861 (2000).

    Article  CAS  Google Scholar 

  29. Davidson, A., Patora-Komisarska, K., Robinson, J.A. & Varani, G. Essential structural requirements for specific recognition of HIV TAR RNA by peptide mimetics of Tat protein. Nucleic Acids Res. 39, 248–256 (2011).

    Article  CAS  Google Scholar 

  30. Davidson, A. et al. Simultaneous recognition of HIV-1 TAR RNA bulge and loop sequences by cyclic peptide mimics of Tat protein. Proc. Natl. Acad. Sci. USA 106, 11931–11936 (2009).

    Article  CAS  Google Scholar 

  31. White, R.J. & Durr, F.E. Development of mitoxantrone. Invest. New Drugs 3, 85–93 (1985).

    Article  CAS  Google Scholar 

  32. Parolin, C. et al. New anti-human immunodeficiency virus type 1 6-aminoquinolones: mechanism of action. Antimicrob. Agents Chemother. 47, 889–896 (2003).

    Article  CAS  Google Scholar 

  33. Blount, K.F., Tor, Y., Hamasaki, K. & Ueno, A. Using pyrene-labeled HIV-1 TAR to measure RNA-small molecule binding aminoglycoside antibiotics, neamine and its derivatives as potent inhibitors for the RNA-protein interactions derived from HIV-1 activators. Nucleic Acids Res. 31, 5490–5500 (2003).

    Article  CAS  Google Scholar 

  34. DeJong, E.S., Chang, C.E., Gilson, M.K. & Marino, J.P. Proflavine acts as a Rev inhibitor by targeting the high-affinity Rev binding site of the Rev responsive element of HIV-1. Biochemistry 42, 8035–8046 (2003).

    Article  CAS  Google Scholar 

  35. Kaul, M., Barbieri, C.M. & Pilch, D.S. Fluorescence-based approach for detecting and characterizing anti biotic-induced conformational changes in ribosomal RNA: Comparing aminoglycoside binding to prokaryotic and eukaryotic ribosomal RNA sequences. J. Am. Chem. Soc. 126, 3447–3453 (2004).

    Article  CAS  Google Scholar 

  36. Stelzer, A.C., Kratz, J.D., Zhang, Q. & Al-Hashimi, H.M. RNA dynamics by design: biasing ensembles towards the ligand-bound state. Angew. Chem. Int. Ed. Engl. 49, 5731–5733 (2010).

    Article  CAS  Google Scholar 

  37. Lapidot, A., Berchanski, A. & Borkow, G. Insight into the mechanisms of aminoglycoside derivatives interaction with HIV-1 entry steps and viral gene transcription. FEBS J. 275, 5236–5257 (2008).

    Article  CAS  Google Scholar 

  38. Lapidot, A., Vijayabaskar, V., Litovchick, A., Yu, J.G. & James, T.L. Structure-activity relationships of amino glyco side-arginine conjugates that bind HIV-1 RNAs as determined by fluorescence and NMR spectroscopy. FEBS Lett. 577, 415–421 (2004).

    Article  CAS  Google Scholar 

  39. Faber, C., Sticht, H., Schweimer, K. & Rosch, P. Structural rearrangements of HIV-1 Tat-responsive RNA upon binding of neomycin B. J. Biol. Chem. 275, 20660–20666 (2000).

    Article  CAS  Google Scholar 

  40. Cabrera, C. et al. Anti-HIV activity of a novel aminoglycoside-arginine conjugate. Antiviral Res. 53, 1–8 (2002).

    Article  CAS  Google Scholar 

  41. Blount, K.F., Zhao, F., Hermann, T. & Tor, Y. Conformational constraint as a means for understanding RNA-aminoglycoside specificity. J. Am. Chem. Soc. 127, 9818–9829 (2005).

    Article  CAS  Google Scholar 

  42. Boehr, D.D., Nussinov, R. & Wright, P.E. The role of dynamic conformational ensembles in biomolecular recognition. Nat. Chem. Biol. 5, 789–796 (2009).

    Article  CAS  Google Scholar 

  43. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on unix pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A.V. Kurochkin for NMR expertise, and we thank the Michigan Economic Development Cooperation and the Michigan Technology Tri-Corridor for support of the purchase of a 600-MHz spectrometer. This work was supported by the US National Institutes of Health (R01 AI066975-01 and R01 CA144043), the US National Science Foundation (NSF Career Award CHE-0918817) and an NSF Graduate Research Fellowship for A.C.S. and A.T.F.

Author information

Authors and Affiliations

Authors

Contributions

H.M.A.-H. and A.C.S. conceived the docking approach; A.T.F., I.A., A.C.S. and H.M.A.-H. developed the approach for constructing RNA dynamic structure ensembles; A.C.S., with input from A.T.F. and J.D.K., performed the docking simulations; A.C.S., J.D.K. and J.L. preformed the in vitro fluorescence assays and NMR experiments; M.D.S., M.J.G.-H and D.M.M. carried out the transfection and viral-replication assays; H.M.A.-H., A.C.S., A.T.F., J.D.K., I.A. and D.M.M. wrote the paper.

Corresponding author

Correspondence to Hashim M Al-Hashimi.

Ethics declarations

Competing interests

H.M.A.-H. is an advisor to and holds an ownership interest in Nymirum, an RNA-based drug-discovery company. A.C.S. completed this work as part of his dissertation and is now employed by Nymirum. The research reported in this article was performed by the University of Michigan faculty and students and was funded by a US National Institutes of Health contract to H.M.A.-H.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Methods (PDF 3462 kb)

Supplementary Data

Supplementary Data (XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stelzer, A., Frank, A., Kratz, J. et al. Discovery of selective bioactive small molecules by targeting an RNA dynamic ensemble. Nat Chem Biol 7, 553–559 (2011). https://doi.org/10.1038/nchembio.596

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.596

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing