Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

A postreductionist framework for protein biochemistry

As biochemistry ventures out from its reductionist roots, concentration effects and high surface-to-volume ratios will challenge our current understanding of biological systems, with colloidal and surface chemistry leading to new insights and approaches. How must our thinking change, what new tools will we need and how will these new tools be developed?

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: To-scale drawing of E. coli cytosol illustrates the problems faced in developing a framework for postreductionist biochemistry: the high concentration of a diverse mixture of proteins leads to a chemically complicated system in which there is little bulk water.
Figure 2: Proximity energy profile for the approach of two identical proteins with a net charge of 10 and charge-dipole amplitude of 0.01 kilojoules mol−1 coulomb−1 debye−1.

References

  1. Gierasch, L.M. & Gershenson, A. Nat. Chem. Biol. 5, 774–777 (2009).

    Article  CAS  Google Scholar 

  2. Wyman, J. Jr. Adv. Protein Chem. 19, 223–286 (1964).

    Article  CAS  Google Scholar 

  3. Hiemans, P.C. & Rajagopalan, R. Principles of Colloid and Surface Chemistry 3rd edn. (Marcel Dekker, Inc., New York, 1997).

    Google Scholar 

  4. Huang, X. et al. Annu. Rev. Biochem. 70, 149–180 (2001).

    Article  CAS  Google Scholar 

  5. Spivey, H.O. & Ovádi, J. Methods 19, 306–321 (1999).

    Article  CAS  Google Scholar 

  6. Wu, X. et al. Proc. Natl. Acad. Sci. USA 88, 497–501 (1991).

    Article  CAS  Google Scholar 

  7. Durant, J.A. et al. Biophys. Chem. 101, 593–609 (2002).

    Article  Google Scholar 

  8. Oncley, J.L. J. Am. Chem. Soc. 60, 1115–1123 (1938).

    Article  CAS  Google Scholar 

  9. Scatchard, G. & Black, E.S. J. Phys. Colloid Chem. 53, 88–99 (1949).

    Article  CAS  Google Scholar 

  10. Gokarn, Y.R. et al. Protein Sci. 20, 580–587 (2011).

    Article  CAS  Google Scholar 

  11. Yadav, S. et al. J. Pharm. Sci. 99, 1152–1168 (2010).

    Article  CAS  Google Scholar 

  12. Schneckenburger, H. et al. J. Biophotonics. 4, 143–149 (2011).

    Article  Google Scholar 

  13. Digman, M.A. & Gratton, E. Wiley Interdiscip. Rev. Syst. Biol. Med. 1, 273–282 (2009).

    Article  CAS  Google Scholar 

  14. Kroe, R.R. & Laue, T.M. Anal. Biochem. 390, 1–13 (2009).

    Article  CAS  Google Scholar 

  15. Burgess, B.R. et al. J. Biol. Chem. 283, 27598–27603 (2008).

    Article  CAS  Google Scholar 

  16. Demeule, B. et al. Anal. Biochem. 388, 279–287 (2009).

    Article  CAS  Google Scholar 

  17. Stafford, W.F. Methods Enzymol. 240, 478–501 (1994).

    Article  Google Scholar 

  18. Cao, W. & Demeler, B. Biophys. J. 95, 54–65 (2008).

    Article  CAS  Google Scholar 

  19. Schuck, P. Biophys. J. 78, 1606–1619 (2000).

    Article  CAS  Google Scholar 

  20. Brookes, E., Cao, W. & Demeler, B. Eur. Biophys. J. 39, 405–414 (2010).

    Article  Google Scholar 

  21. Brookes, E. & Demeler, B. GECCO Proceedings ACM 2007, 361–368 (2007)

    Google Scholar 

  22. Brookes, E. & Demeler, B. Colloid Polym. Sci. 286, 138–148 (2008).

    Article  Google Scholar 

  23. Strauss, H.M. et al. Colloid Polym. Sci. 286, 121–128 (2008).

    Article  CAS  Google Scholar 

  24. Cölfen, H. et al. Eur. Biophys. J. 39, 347–359 (2010).

    Article  Google Scholar 

  25. Goodsell, D. The Machinery of Life corrected 2nd edn. (Springer, 2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tom Laue or Borries Demeler.

Ethics declarations

Competing interests

T.L. is co-owner of Spin Analytical, which is producing the new analytical ultracentrifuge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laue, T., Demeler, B. A postreductionist framework for protein biochemistry. Nat Chem Biol 7, 331–334 (2011). https://doi.org/10.1038/nchembio.575

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.575

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing