Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interfacial enzyme kinetics of a membrane bound kinase analyzed by real-time MAS-NMR

Abstract

The simultaneous observation of interdependent reactions within different phases as catalyzed by membrane-bound enzymes is still a challenging task. One such enzyme, the Escherichia coli integral membrane protein diacylglycerol kinase (DGK), is a key player in lipid regulation. It catalyzes the generation of phosphatidic acid within the membrane through the transfer of the γ-phosphate from soluble MgATP to membrane-bound diacylglycerol. We demonstrate that time-resolved 31P magic angle spinning NMR offers a unique opportunity to simultaneously and directly detect both ATP hydrolysis and diacylglycerol phosphorylation. This experiment demonstrates that solid-state NMR provides a general approach for the kinetic analysis of coupled reactions at the membrane interface regardless of their compartmentalization. The enzymatic activity of DGK was probed with different lipid substrates as well as ATP analogs. Our data yield conclusions about intersubunit cooperativity, reaction stoichiometries and phosphoryl transfer mechanism and are discussed in the context of known structural data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time-resolved 31P MAS NMR is used to follow the phosphorylation of DOG, which is catalyzed by DGK reconstituted in DOPC bilayers at the expense of ATP.
Figure 2: Progress curves showing DGK's enzymatic activity extracted from time-resolved 31P-DP MAS spectra recorded without and with DBG present.
Figure 3: Kinetic analysis of rates and stoichiometry of the reaction catalyzed by DGK revealing cooperativity and efficiency.
Figure 4: The effects of Vi and ATPγS on DGK activity allow mechanistic insights.
Figure 5: Three-dimensional surface model of DGK trimer.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Forneris, F. & Mattevi, A. Enzymes without borders: Mobilizing substrates, delivering products. Science 321, 213–216 (2008).

    Article  CAS  Google Scholar 

  2. Daly, C.J. & McGrath, J.C. Fluorescent ligands, antibodies, and proteins for the study of receptors. J. Pharm. Thera. 100, 101–118 (2003).

    Article  CAS  Google Scholar 

  3. Omote, H. & Al-Shawi, M.K.A. Novel electron paramagnetic resonance approach to determine the mechanism of drug transport by P-glycoprotein. J. Biol. Chem. 277, 45688–45694 (2002).

    Article  CAS  Google Scholar 

  4. Vann, L.R., Wooding, F.B.P., Irvine, R.F. & Divecha, N. Metabolism and possible compartmentalization of inositol lipids in isolated rat-liver nuclei. Biochem. J. 327, 569–576 (1997).

    Article  CAS  Google Scholar 

  5. Goñi, F.M. & Alonso, A. Sphingomyelinases: enzymology and membrane activity. FEBS Lett. 531, 38–46 (2002).

    Article  Google Scholar 

  6. Hurley, J.H. & Grobler, J.A. Protein kinase C and phospholipase C: bilayer interactions and regulation. Curr. Opin. Struct. Biol. 7, 557–565 (1997).

    Article  CAS  Google Scholar 

  7. Wattenberg, B.W., Pitson, S.M. & Raben, D.M. The sphingosine and diacylglycerol kinase superfamily of signaling kinases: localization as a key to signaling function. J. Lipid Res. 47, 1128–1139 (2006).

    Article  CAS  Google Scholar 

  8. Kanoh, H., Yamada, K. & Sakane, F. Diacylglycerol kinase–a key modulator of signal transduction. Trends Biochem. Sci. 15, 47–50 (1990).

    Article  CAS  Google Scholar 

  9. Kennedy, E.P. Osmotic regulation and the biosynthesis of membrane-derived oligosaccharides in Escherichia coli. Proc. Natl. Acad. Sci. USA 79, 1092–1095 (1982).

    Article  CAS  Google Scholar 

  10. Raetz, C.R. & Newman, K. Diglyceride kinase mutants of Escherichia coli: inner membrane association of 1,2-diglyceride and its relation to synthesis of membrane-derived oligosaccharides. J. Bacteriol. 137, 860–868 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Yamashita, Y., Takehara, T. & Kuramitsu, H.K. Molecular characterization of a Streptococcus mutans mutant altered in environmental stress responses. J. Bacteriol. 175, 6220–6228 (1993).

    Article  CAS  Google Scholar 

  12. Chen, P., Novak, J., Qi, F. & Caufield, P.W. Diacylglycerol kinase is involved in regulation of expression of the lantibiotic mutacin ii of Streptococcus mutans. J. Bacteriol. 180, 167–170 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sanders, C.R. et al. Escherichia coli diacylglycerol kinase is an α-helical polytopic membrane protein and can spontaneously insert into preformed lipid vesicles. Biochemistry 35, 8610–8618 (1996).

    Article  CAS  Google Scholar 

  14. Schaap, D., van der Wal, J. & van Blitterswijk, W.J. Consensus sequences for ATP-binding sites in protein kinases do not apply to diacylglycerol kinases. Biochem. J. 304, 661–662 (1994).

    Article  CAS  Google Scholar 

  15. Smith, C.A. & Rayment, I. Active site comparisons highlight structural similarities between myosin and other P-loop proteins. Biophys. J. 70, 1590–1602 (1996).

    Article  CAS  Google Scholar 

  16. Nagy, J.K., Lau, F.W., Bowie, J.B. & Sanders, C.R. Mapping the oligomeric interface of diacylglycerol kinase by engineered thiol cross-linking: homologous sites in the transmembrane domain. Biochemistry 39, 4154–4164 (2000).

    Article  CAS  Google Scholar 

  17. Lau, F.W., Chen, X. & Bowie, J.U. Active sites of diacylglycerol kinase from Escherichia coli are shared between subunits. Biochemistry 38, 5521–5527 (1999).

    Article  CAS  Google Scholar 

  18. Oxenoid, K., Sönnichsen, F.D. & Sanders, C.R. Topology and secondary structure of the N-terminal domain of diacylglycerol kinase. Biochemistry 41, 12876–12882 (2002).

    Article  CAS  Google Scholar 

  19. Badola, P. & Sanders, C.R. Escherichia coli diacylglycerol kinase is an evolutionarily optimized membrane enzyme and catalyzes direct phosphoryl transfer. J. Biol. Chem. 272, 24176–24182 (1997).

    Article  CAS  Google Scholar 

  20. Koehler, J. et al. Lysophospholipid micelles sustain the stability and catalytic activity of diacylglycerol kinase in the absence of lipids. Biochemistry 49, 7089–7099 (2010).

    Article  CAS  Google Scholar 

  21. Walsh, J.P., Fahrner, L. & Bell, R.M. Sn-1,2-diacylglycerol kinase of Escherichia-coli. Diacylglycerol analogs define specificity and mechanism. J. Biol. Chem. 265, 4374–4381 (1990).

    CAS  PubMed  Google Scholar 

  22. Van Horn, W.D. et al. Solution nuclear magnetic resonance structure of membrane-integral diacylglycerol kinase. Science 324, 1726–1729 (2009).

    Article  CAS  Google Scholar 

  23. McDermott, A. & Polenova, T. Solid state NMR: new tools for insight into enzyme function. Curr. Opin. Struct. Biol. 17, 617–622 (2007).

    Article  CAS  Google Scholar 

  24. Rozovsky, S. & McDermott, A.E. Substrate product equilibrium on a reversible enzyme, triosephosphate isomerase. Proc. Natl. Acad. Sci. USA 104, 2080–2085 (2007).

    Article  CAS  Google Scholar 

  25. Sperling, L.J., Berthold, D.A., Sasser, T.L., Jeisy-Scott, V. & Rienstra, C.M. Assignment strategies for large proteins by magic-angle spinning NMR: the 21-kDa disulfide-bond-forming enzyme DSBA. J. Mol. Biol. 399, 268–282 (2010).

    Article  CAS  Google Scholar 

  26. Cherepanov, A.V., Doroshenko, E.V., Matysik, J., de Vries, S. & de Groot, H.J. The associative nature of adenylyl transfer catalyzed by T4 DNA ligase. Proc. Natl. Acad. Sci. USA 105, 8563–8568 (2008).

    Article  CAS  Google Scholar 

  27. Hellmich, U.A., Haase, W., Velamakanni, S., van Veen, H.W. & Glaubitz, C. Caught in the act: ATP hydrolysis of an ABC-multidrug transporter followed by real-time magic angle spinning NMR. FEBS Lett. 582, 3557–3562 (2008).

    Article  CAS  Google Scholar 

  28. Crepeau, R.H., Saxena, S., Lee, S., Patyal, B. & Freed, J.H. Studies on lipid-membranes by 2-dimensional fourier-transform ESR: enhancement of resolution to ordering and dynamics. Biophys. J. 66, 1489–1504 (1994).

    Article  CAS  Google Scholar 

  29. Cohn, M. & Hughes, T.R. Nuclear magnetic resonance spectra of adenosine di- and triphosphate. II. Effect of complexing with divalent metal ions. J. Biol. Chem. 237, 176–181 (1962).

    CAS  PubMed  Google Scholar 

  30. Clarke, K. et al. The β/α peak height ratio of ATP–A measure of free [Mg2+] using 31P NMR. J. Biol. Chem. 271, 21142–21150 (1996).

    Article  CAS  Google Scholar 

  31. Schellenberger, A., Fischer, G., Hübner, G. & Ulbrich, R. Enzymkatalyse: Einführung in die Chemie, Biochemie und Technologie der Enzyme (Springer, Berlin; Heidelberg; New York; London; Paris; Tokoyo, 1989).

  32. Goodno, C.C. Inhibition of myosin ATPase by vanadate ion. Proc. Natl. Acad. Sci. USA 76, 2620–2624 (1979).

    Article  CAS  Google Scholar 

  33. Goodno, C.C. & Taylor, E.W. Inhibition of actomyosin ATPase by vanadate. Proc. Natl. Acad. Sci. USA 79, 21–25 (1982).

    Article  CAS  Google Scholar 

  34. Eckstein, F. Nucleoside phosphorothioates. Annu. Rev. Biochem. 54, 367–402 (1985).

    Article  CAS  Google Scholar 

  35. Zhang, Y.L. et al. Impaired transition state complementarity in the hydrolysis of O-arylphosphorothioates by protein-tyrosine phosphatases. Biochemistry 38, 12111–12123 (1999).

    Article  CAS  Google Scholar 

  36. Bienkiewicz, E.A. & Lumb, K.J. Random-coil chemical shifts of phosphorylated amino acids. J. Biomol. NMR 15, 203–206 (1999).

    Article  CAS  Google Scholar 

  37. Takahashi, K. et al. Tyrosine-specific dephosphorylation-phosphorylation with alkaline-phosphatases and epidermal growth-factor receptor kinase as evidenced by P-31 nmr-spectroscopy. J. Biochem. 101, 1107–1114 (1987).

    Article  CAS  Google Scholar 

  38. Gribble, F.M. et al. Novel method for measurement of submembrane ATP concentration. J. Biol. Chem. 275, 30046–30049 (2000).

    Article  CAS  Google Scholar 

  39. Albery, W.J. & Knowles, J.R. Efficiency and evolution of enzyme catalysis. Angew. Chem. Int. Edn Engl. 16, 285–293 (1977).

    Article  CAS  Google Scholar 

  40. Catrina, J.E. & Hengge, A.C. Comparison of phosphorothioate and phosphate monoester transfer reactions: activation parameters, solvent effects, and the effect of metal ions. J. Am. Chem. Soc. 121, 2156–2163 (1999).

    Article  CAS  Google Scholar 

  41. Hollfelder, F. & Herschlag, D. The nature of the transition state of enzyme-catalyzed phosphoryl transfer: hydrolysis of O-arylphosphorothioates by alkaline phosphatase. Biochemistry 34, 12255–12264 (1995).

    Article  CAS  Google Scholar 

  42. Cohn, M. Some properties of the phosphorothioate analogues of adenosine triphosphate as substrates of enzymatic reactions. Acc. Chem. Res. 15, 326–332 (1982).

    Article  CAS  Google Scholar 

  43. Eckstein, F. Phosphorothioate analogues of nucleotides: tools for the investigation of biochemical processes. Angew. Chem. Int. Edn Engl. 22, 423–439 (1983).

    Article  Google Scholar 

  44. Frey, P.A. & Sammons, R.D. Bond order and charge localizaton in nucleoside phosphorothioates. Science 228, 541–545 (1985).

    Article  CAS  Google Scholar 

  45. Sträter, N., Lipscomb, W.N., Klabunde, T. & Krebs, B. Enzymatische acyl–und phosphoryltransferreaktionen unter beteiligung von zwei metallionen. Angew. Chem. 108, 2158–2191 (1996).

    Article  Google Scholar 

  46. Walsh, J.P. & Bell, R.M. sn-1,2-diacylglycerol kinase of Escherichia coli. Mixed micellar analysis of the phospholipid cofactor requirement and divalent-cation dependence. J. Biol. Chem. 261, 6239–6247 (1986).

    CAS  PubMed  Google Scholar 

  47. Cherepanov, A.V. & de Vries, S. Microsecond freeze-hyperquenching: development of a new ultrafast micro-mixing and sampling technology and application to enzyme catalysis. Biochim. Biophys. Acta-Bioenerg. 1656, 1–31 (2004).

    Article  CAS  Google Scholar 

  48. Maly, T. et al. Dynamic nuclear polarization at high magnetic fields. J. Chem. Phys. 128, 052211 (2008).

    Article  Google Scholar 

  49. Czerski, L. & Sanders, C.R. Functionality of a membrane protein in bicelles. Anal. Biochem. 284, 327–333 (2000).

    Article  CAS  Google Scholar 

  50. Bennett, A.E., Rienstra, C.M., Auger, M., Lakshmi, K.V. & Griffin, R.G. Heteronuclear decoupling in rotating solids. J. Chem. Phys. 103, 6951–6958 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Becker-Baldus, L. Buchner, S. Hölper, C. Kaiser, N. Pfleger and L. Reggie for technical assistance. Plasmids were kindly provided by C.R. Sanders (Vanderbilt University). We thank D. O'Donovan and J.J. Lopez for initial help with data analysis. We thank M. Göbel for enabling access to his laboratory for substrate synthesis and B. Ludwig for helpful discussions. M. Lorch is acknowledged for valuable comments to the manuscript. The work was supported by the Lipid Signalling Forschungszentrum Frankfurt (LiFF) and by SFB 807 “Membrane Transport.” Further support by the EU consortium Lipid-PRISM and the Cluster of Excellence Macromolecular Complexes Frankfurt is acknowledged. S.J.U. is grateful for a stipend from the “Studienstiftung des deutschen Volkes.”

Author information

Authors and Affiliations

Authors

Contributions

S.J.U., U.A.H. and C.G. designed the project. S.J.U. carried out protein preparation. S.J.U. and S.U. synthesized DBG. S.J.U. and U.A.H. performed NMR experiments. S.J.U. carried out data analysis. S.J.U., U.A.H. and C.G. carried out data interpretation and wrote the manuscript. C.G. supervised the project.

Corresponding author

Correspondence to Clemens Glaubitz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Figures 1–4 and Supplementary Tables 1 & 2 (PDF 3576 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ullrich, S., Hellmich, U., Ullrich, S. et al. Interfacial enzyme kinetics of a membrane bound kinase analyzed by real-time MAS-NMR. Nat Chem Biol 7, 263–270 (2011). https://doi.org/10.1038/nchembio.543

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.543

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing