Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways

Abstract

Living systems have evolved remarkable molecular functions that can be redesigned for in vivo chemical synthesis as we gain a deeper understanding of the underlying biochemical principles for de novo construction of synthetic pathways. We have focused on developing pathways for next-generation biofuels as they require carbon to be channeled to product at quantitative yields. However, these fatty acid–inspired pathways must manage the highly reversible nature of the enzyme components. For targets in the biodiesel range, the equilibrium can be driven to completion by physical sequestration of an insoluble product, which is a mechanism unavailable to soluble gasoline-sized products. In this work, we report the construction of a chimeric pathway assembled from three different organisms for the high-level production of n-butanol (4,650 ± 720 mg l−1) that uses an enzymatic chemical reaction mechanism in place of a physical step as a kinetic control element to achieve high yields from glucose (28%).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vivo production of n-butanol.

Similar content being viewed by others

References

  1. Stephanopoulos, G. & Sinskey, A.J. Metabolic engineering—methodologies and future prospects. Trends Biotechnol. 11, 392–396 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Rohlin, L., Oh, M.K. & Liao, J.C. Microbial pathway engineering for industrial processes: Evolution, combinatorial biosynthesis and rational design. Curr. Opin. Microbiol. 4, 330–335 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Keasling, J.D. Synthetic biology for synthetic chemistry. ACS Chem. Biol. 3, 64–76 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Ro, D.K. et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440, 940–943 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Draths, K.M., Knop, D.R. & Frost, J.W. Shikimic acid and quinic acid: Replacing isolation from plant sources with recombinant microbial biocatalysis. J. Am. Chem. Soc. 121, 1603–1604 (1999).

    Article  CAS  Google Scholar 

  6. Biebl, H., Menzel, K., Zeng, A.P. & Deckwer, W.D. Microbial production of 1,3-propanediol. Appl. Microbiol. Biotechnol. 52, 289–297 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Bragg, J.R., Prince, R.C., Harner, E.J. & Ronald, M.A. Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature 368, 413–418 (1994).

    Article  CAS  Google Scholar 

  8. Fischer, C.R., Klein-Marcuschamer, D. & Stephanopoulos, G. Selection and optimization of microbial hosts for biofuels production. Metab. Eng. 10, 295–304 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Atsumi, S. & Liao, J.C. Metabolic engineering for advanced biofuels production from Escherichia coli. Curr. Opin. Biotechnol. 19, 414–419 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Atsumi, S., Hanai, T. & Liao, J.C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451, 86–89 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Steen, E.J. et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463, 559–562 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Schirmer, A., Rude, M.A., Li, X., Popova, E. & del Cardayre, S.B. Microbial biosynthesis of alkanes. Science 329, 559–562 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Sheehan, J., Dunahay, T., Benemann, J. & Roessler, P. A look back at the U.S. Department of Energy's Aquatic Species Program: Biodiesel from algae (U.S. Department of Energy, Office of Fuels Development NREL/TP-580–24190), National Renewable Energy Laboratory (1998).

  14. Zaslavskaia, L.A. et al. Trophic conversion of an obligate photoautotrophic organism through metabolic engineering. Science 292, 2073–2075 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Dürre, P. Biobutanol: An attractive biofuel. Biotechnol. J. 2, 1525–1534 (2007).

    Article  PubMed  Google Scholar 

  16. Lee, S.Y. et al. Fermentative butanol production by clostridia. Biotechnol. Bioeng. 101, 209–228 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Papoutsakis, E.T. Engineering solventogenic clostridia. Curr. Opin. Biotechnol. 19, 420–429 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Nair, R.V., Green, E.M., Watson, D.E., Bennett, G.N. & Papoutsakis, E.T. Regulation of the sol locus genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 by a putative transcriptional repressor. J. Bacteriol. 181, 319–330 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Scotcher, M.C., Rudolph, F.B. & Bennett, G.N. Expression of abrB310 and sinR, and effects of decreased abrB310 expression on the transition from acidogenesis to solventogenesis, in Clostridium acetobutylicum ATCC 824. Appl. Environ. Microbiol. 71, 1987–1995 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Atsumi, S. et al. Metabolic engineering of Escherichia coli for 1-butanol production. Metab. Eng. 10, 305–311 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Steen, E.J. et al. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb. Cell Fact. 7, 36 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nielsen, D.R. et al. Engineering alternative butanol production platforms in heterologous bacteria. Metab. Eng. 11, 262–273 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Inui, M. et al. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl. Microbiol. Biotechnol. 77, 1305–1316 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Peoples, O.P. & Sinskey, A.J. Poly-β-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC). J. Biol. Chem. 264, 15298–15303 (1989).

    CAS  PubMed  Google Scholar 

  25. Lynen, F. & Ochoa, S. Enzymes of fatty acid metabolism. Biochim. Biophys. Acta 12, 299–314 (1953).

    Article  CAS  PubMed  Google Scholar 

  26. Leaf, T.A. & Srienc, F. Metabolic modeling of polyhydroxybutyrate biosynthesis. Biotechnol. Bioeng. 57, 557–570 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Waterson, R.M., Castellino, F.J., Hass, G.M. & Hill, R.L. Purification and characterization of crotonase from Clostridium acetobutylicum. J. Biol. Chem. 247, 5266–5271 (1972).

    CAS  PubMed  Google Scholar 

  28. Boynton, Z.L., Bennet, G.N. & Rudolph, F.B. Cloning, sequencing, and expression of clustered genes encoding β-hydroxybutyryl-coenzyme A (CoA) dehydrogenase, crotonase, and butyryl-CoA dehydrogenase from Clostridium acetobutylicum ATCC 824. J. Bacteriol. 178, 3015–3024 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wallace, K.K. et al. Purification of crotonyl-CoA reductase from Streptomyces collinus and cloning, sequencing and expression of the corresponding gene in Escherichia coli. Eur. J. Biochem. 233, 954–962 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Fontaine, L. et al. Molecular characterization and transcriptional analysis of adhE2, the gene encoding the NADH-dependent aldehyde/alcohol dehydrogenase responsible for butanol production in alcohologenic cultures of Clostridium acetobutylicum ATCC 824. J. Bacteriol. 184, 821–830 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Slater, S.C., Voige, W.H. & Dennis, D.E. Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-β-hydroxybutyrate biosynthetic pathway. J. Bacteriol. 170, 4431–4436 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, F. et al. Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri. J. Bacteriol. 190, 843–850 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Hoffmeister, M., Piotrowski, M., Nowitzki, U. & Martin, W. Mitochondrial trans-2-enoyl-CoA reductase of wax ester fermentation from Euglena gracilis defines a new family of enzymes involved in lipid synthesis. J. Biol. Chem. 280, 4329–4338 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Tucci, S. & Martin, W. A novel prokaryotic trans-2-enoyl-CoA reductase from the spirochete Treponema denticola. FEBS Lett. 581, 1561–1566 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Bennett, B.D. et al. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 5, 593–599 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Erb, T.J., Brecht, V., Fuchs, G., Muller, M. & Alber, B.E. Carboxylation mechanism and stereochemistry of crotonyl-CoA carboxylase/reductase, a carboxylating enoyl-thioester reductase. Proc. Natl. Acad. Sci. USA 106, 8871–8876 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wakil, S.J. Studies on the fatty acid oxidizing system of animal tissues. IX. Stereospecificity of unsaturated acyl CoA hydrase. Biochim. Biophys. Acta 19, 497–504 (1956).

    Article  CAS  PubMed  Google Scholar 

  38. Roca, C., Nielsen, J. & Olsson, L. Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyces cerevisiae improves ethanol production. Appl. Environ. Microbiol. 69, 4732–4736 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sanchez, A.M., Andrews, J., Hussein, I., Bennett, G.N. & San, K.Y. Effect of overexpression of a soluble pyridine nucleotide transhydrogenase (UdhA) on the production of poly(3-hydroxybutyrate) in Escherichia coli. Biotechnol. Prog. 22, 420–425 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Fukui, T., Shiomi, N. & Doi, Y. Expression and characterization of (R)-specific enoyl coenzyme A hydratase involved in polyhydroxyalkanoate biosynthesis by Aeromonas caviae. J. Bacteriol. 180, 667–673 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Agius, L. & Seratt, H.S.A. Channeling in intermediary metabolism. (Portland Press, Ltd., London, 1996).

  42. Hopwood, D.A. & Sherman, D.H. Molecular genetics of polyketides and its comparison to fatty acid biosynthesis. Annu. Rev. Genet. 24, 37–66 (1990).

    Article  CAS  PubMed  Google Scholar 

  43. White, S.W., Zheng, J., Zhang, Y.M. & Rock, C.O. The structural biology of type II fatty acid biosynthesis. Annu. Rev. Biochem. 74, 791–831 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Kunau, W.H., Dommes, V. & Schulz, H. β-oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: A century of continued progress. Prog. Lipid Res. 34, 267–342 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. An, S., Kumar, R., Sheets, E.D. & Benkovic, S.J. Reversible compartmentalization of de novo purine biosynthetic complexes in living cells. Science 320, 103–106 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Dueber, J.E. et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol. 27, 753–759 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Yeates, T.O., Kerfeld, C.A., Heinhorst, S., Cannon, G.C. & Shively, J.M. Protein-based organelles in bacteria: Carboxysomes and related microcompartments. Nat. Rev. Microbiol. 6, 681–691 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Wu, W.-J. et al. Stereospecificity of the reaction catalyzed by enoyl-CoA hydratase. J. Am. Chem. Soc. 122, 3987–3994 (2000).

    Article  CAS  Google Scholar 

  49. Wakil, S.J., Green, D.E., Mii, S. & Mahler, H.R. Studies on the fatty acid oxidizing system of animal tissues. VI. β-Hydroxyacyl coenzyme A dehydrogenase. J. Biol. Chem. 207, 631–638 (1954).

    CAS  PubMed  Google Scholar 

  50. Tummala, S.B., Welker, N.E. & Papoutsakis, E.T. Design of antisense RNA constructs for downregulation of the acetone formation pathway of Clostridium acetobutylicum. J. Bacteriol. 185, 1923–1934 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. Hirano for her work on the ter gene assembly during her rotation. B.B.B.-W. would like to thank the Aldo DeBenedictis Fund for a predoctoral fellowship, and R.J.B. would like to acknowledge the University of California, Berkeley, Summer Undergraduate Research Fellowship program. This work was funded by generous support from University of California, Berkeley, the Camille and Henry Dreyfus Foundation, the Arnold and Mabel Beckman Foundation and the Dow Sustainable Products and Solutions Program.

Author information

Authors and Affiliations

Authors

Contributions

R.J.B. constructed the plasmids for Ccr quantification and measured n-butanol production and Ccr-Stag levels in these strains. B.B.B.-W. carried out the remaining experiments. B.B.B.-W and M.C.Y.C. planned the experiments and wrote the manuscript.

Corresponding author

Correspondence to Michelle C Y Chang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Figures 1–11 and Supplementary Tables 1–8 (PDF 1685 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bond-Watts, B., Bellerose, R. & Chang, M. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol 7, 222–227 (2011). https://doi.org/10.1038/nchembio.537

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.537

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing