Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A natural prodrug activation mechanism in nonribosomal peptide synthesis

Abstract

We have identified a new mechanism for the cleavage and activation of nonribosomally made peptides and peptide-polyketide hybrids that are apparently operational in several different bacteria. This process includes the cleavage of a precursor molecule by a membrane-bound and D-asparagine–specific peptidase, as shown here in the biosynthesis of the antibiotic xenocoumacin from Xenorhabdus nematophila.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Xenocoumacins and prexenocoumacins produced from Xenorhabdus nematophila.
Figure 2: Transformation of prexenocoumacin B (4) by E. coli.
Figure 3: XcnG homologs and their domain architecture.

Similar content being viewed by others

References

  1. Tuteja, R. Arch. Biochem. Biophys. 441, 107–111 (2005).

    Article  CAS  Google Scholar 

  2. Green, D. Hemodial. Int. 10 Suppl 2, S2–S4 (2006).

    Article  Google Scholar 

  3. Mylne, J.S. et al. Nat. Chem. Biol. 7, 257–259 (2011).

    Article  CAS  Google Scholar 

  4. Willey, J.M. & van der Donk, W.A. Annu. Rev. Microbiol. 61, 477–501 (2007).

    Article  CAS  Google Scholar 

  5. Finking, R. & Marahiel, M.A. Annu. Rev. Microbiol. 58, 453–488 (2004).

    Article  CAS  Google Scholar 

  6. Reimer, D., Luxenburger, E., Brachmann, A.O. & Bode, H.B. ChemBioChem 10, 1997–2001 (2009).

    Article  CAS  Google Scholar 

  7. Goodrich-Blair, H. Curr. Opin. Microbiol. 10, 225–230 (2007).

    Article  CAS  Google Scholar 

  8. Herbert, E.E. & Goodrich-Blair, H. Nat. Rev. Microbiol. 5, 634–646 (2007).

    Article  CAS  Google Scholar 

  9. Fujii, K. et al. Anal. Chem. 69, 3346–3352 (1997).

    Article  CAS  Google Scholar 

  10. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  11. Hashimoto, M. et al. J. Antibiot. (Tokyo) 60, 752–756 (2007).

    Article  CAS  Google Scholar 

  12. Kevany, B.M., Rasko, D.A. & Thomas, M.G. Appl. Environ. Microbiol. 75, 1144–1155 (2009).

    Article  CAS  Google Scholar 

  13. Homburg, S., Oswald, E., Hacker, J. & Dobrindt, U. FEMS Microbiol. Lett. 275, 255–262 (2007).

    Article  CAS  Google Scholar 

  14. Nougayrède, J.P. et al. Science 313, 848–851 (2006).

    Article  Google Scholar 

  15. Dubois, D. et al. J. Biol. Chem. published online, doi:10.1074/jbc.M111.221960 (27 July 2011).

  16. Koketsu, K., Watanabe, K., Suda, H., Oguri, H. & Oikawa, H. Nat. Chem. Biol. 6, 408–410 (2010).

    Article  CAS  Google Scholar 

  17. Silakowski, B. et al. J. Biol. Chem. 274, 37391–37399 (1999).

    Article  CAS  Google Scholar 

  18. Kelley, L.A. & Sternberg, M.J. Nat. Protoc. 4, 363–371 (2009).

    Article  CAS  Google Scholar 

  19. Krissinel, E. & Henrick, K. Acta Crystallogr. D Biol. Crystallogr. 60, 2256–2268 (2004).

    Article  CAS  Google Scholar 

  20. Holland, I.B., Schmitt, L. & Young, J. Mol. Membr. Biol. 22, 29–39 (2005).

    Article  CAS  Google Scholar 

  21. Park, D. et al. Mol. Microbiol. 73, 938–949 (2009).

    Article  CAS  Google Scholar 

  22. Lang, G., Kalvelage, T., Peters, A., Wiese, J. & Imhoff, J.F. J. Nat. Prod. 71, 1074–1077 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Venneri for technical assistance. D.R., P.G. and H.B.B. are grateful to the Deutsche Forschungsgemeinschaft (DFG) for financial support. Work in H.B.B.'s lab is additionally supported by the Frankfurt Initiative for Microbial Sciences (FIMS), the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 223328 (GameXP), and by the research funding program “LOEWE – Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz” of Hessen's Ministry of Higher Education, Research, and the Arts. Support by the DFG-EXC115 (Cluster of Excellence Macromolecular Complexes at the Goethe-University Frankfurt), DFG-SFB807 (Transport and Communication across Biological Membranes) and FIMS is gratefully acknowledged by K.M.P. M.T. is financially supported by the LOEWE program of Hessen's Ministry of Higher Education, Research, and the Arts.

Author information

Authors and Affiliations

Authors

Contributions

D.R. and H.B.B. designed experiments; D.R. and P.G. performed experiments; D.R. and H.B.B. analyzed experimental data, K.M.P. performed XcnG homology modeling; and M.T. performed XcnA and XcnG phylogenetic analysis. D.R., K.M.P., M.T. and H.B.B. wrote the paper.

Corresponding author

Correspondence to Helge B Bode.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 1955 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reimer, D., Pos, K., Thines, M. et al. A natural prodrug activation mechanism in nonribosomal peptide synthesis. Nat Chem Biol 7, 888–890 (2011). https://doi.org/10.1038/nchembio.688

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.688

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing