Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

RF1 knockout allows ribosomal incorporation of unnatural amino acids at multiple sites

This article has been updated

Abstract

Stop codons have been exploited for genetic incorporation of unnatural amino acids (Uaas) in live cells, but their low incorporation efficiency, which is possibly due to competition from release factors, limits the power and scope of this technology. Here we show that the reportedly essential release factor 1 (RF1) can be knocked out from Escherichia coli by 'fixing' release factor 2 (RF2). The resultant strain JX33 is stable and independent, and it allows UAG to be reassigned from a stop signal to an amino acid when a UAG-decoding tRNA-synthetase pair is introduced. Uaas were efficiently incorporated at multiple UAG sites in the same gene without translational termination in JX33. We also found that amino acid incorporation at endogenous UAG codons is dependent on RF1 and mRNA context, which explains why E. coli tolerates apparent global suppression of UAG. JX33 affords a unique autonomous host for synthesizing and evolving new protein functions by enabling Uaa incorporation at multiple sites.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RF1 can be knocked out from E. coli after RF2 is fixed.
Figure 2: RF1 knockout enables incorporation of natural or unnatural amino acids at multiple UAG sites in JX33.
Figure 3: MS analyses of EGFP expressed in JX33 show that pActF was selectively incorporated at multiple UAG sites with high fidelity.
Figure 4: Ten UAG sites are simultaneously suppressed with natural or unnatural amino acids in JX33.
Figure 5: JX33 enables multisite incorporation of various Uaas and in different proteins.
Figure 6: Legitimate UAG codons of endogenous genes are suppressed efficiently after RF1 knockout, and protein extension beyond the UAG codon is dependent on mRNA context.

Similar content being viewed by others

Change history

  • 27 September 2011

    In the version of this article initially published online, the abbreviation for 'unnatural amino acid' (Uaa) was mistakenly used in text referring to the UAA stop codon. The errors have been corrected for the print, PDF and HTML versions of this article.

References

  1. Osawa, S., Jukes, T., Watanabe, K. & Muto, A. Recent evidence for evolution of the genetic code. Microbiol. Rev. 56, 229–264 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Knight, R.D., Freeland, S.J. & Landweber, L.F. Rewiring the keyboard: evolvability of the genetic code. Nat. Rev. Genet. 2, 49–58 (2001).

    Article  CAS  Google Scholar 

  3. Benzer, S. & Champe, S.P. A change from nonsense to sense in the genetic code. Proc. Natl. Acad. Sci. USA 48, 1114–1121 (1962).

    Article  CAS  Google Scholar 

  4. Beier, H. & Grimm, M. Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs. Nucleic Acids Res. 29, 4767–4782 (2001).

    Article  CAS  Google Scholar 

  5. Wang, L., Brock, A., Herberich, B. & Schultz, P.G. Expanding the genetic code of Escherichia coli. Science 292, 498–500 (2001).

    Article  CAS  Google Scholar 

  6. Wang, L. & Schultz, P.G. Expanding the genetic code. Angew. Chem. Int. Ed. Engl. 44, 34–66 (2004).

    Article  Google Scholar 

  7. Wang, Q., Parrish, A.R. & Wang, L. Expanding the genetic code for biological studies. Chem. Biol. 16, 323–336 (2009).

    Article  CAS  Google Scholar 

  8. Scolnick, E., Tompkins, R., Caskey, T. & Nirenberg, M. Release factors differing in specificity for terminator codons. Proc. Natl. Acad. Sci. USA 61, 768–774 (1968).

    Article  CAS  Google Scholar 

  9. Rydén, S.M. & Isaksson, L. A temperature-sensitive mutant of Escherichia coli that shows enhanced misreading of UAG/A and increased efficiency for some tRNA nonsense suppressors. Mol. Gen. Genet. 193, 38–45 (1984).

    Article  Google Scholar 

  10. Gerdes, S.Y. et al. Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J. Bacteriol. 185, 5673–5684 (2003).

    Article  CAS  Google Scholar 

  11. Nakamura, Y., Gojobori, T. & Ikemura, T. Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res. 28, 292 (2000).

    Article  CAS  Google Scholar 

  12. Moore, S.D. & Sauer, R.T. The tmRNA system for translational surveillance and ribosome rescue. Annu. Rev. Biochem. 76, 101–124 (2007).

    Article  CAS  Google Scholar 

  13. Keiler, K.C., Waller, P.R. & Sauer, R.T. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 271, 990–993 (1996).

    Article  CAS  Google Scholar 

  14. Craigen, W.J., Cook, R.G., Tate, W.P. & Caskey, C.T. Bacterial peptide chain release factors: conserved primary structure and possible frameshift regulation of release factor 2. Proc. Natl. Acad. Sci. USA 82, 3616–3620 (1985).

    Article  CAS  Google Scholar 

  15. Uno, M., Ito, K. & Nakamura, Y. Functional specificity of amino acid at position 246 in the tRNA mimicry domain of bacterial release factor 2. Biochimie 78, 935–943 (1996).

    Article  CAS  Google Scholar 

  16. Pósfai, G. et al. Emergent properties of reduced-genome Escherichia coli. Science 312, 1044–1046 (2006).

    Article  Google Scholar 

  17. Datsenko, K.A. & Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  Google Scholar 

  18. Tischer, B.K., von Einem, J., Kaufer, B. & Osterrieder, N. Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques 40, 191–197 (2006).

    Article  CAS  Google Scholar 

  19. Ito, K., Uno, M. & Nakamura, Y. Single amino acid substitution in prokaryote polypeptide release factor 2 permits it to terminate translation at all three stop codons. Proc. Natl. Acad. Sci. USA 95, 8165–8169 (1998).

    Article  CAS  Google Scholar 

  20. Zhang, S., Ryden-Aulin, M., Kirsebom, L.A. & Isaksson, L.A. Genetic implication for an interaction between release factor one and ribosomal protein L7-L12 in vivo. J. Mol. Biol. 242, 614–618 (1994).

    Article  CAS  Google Scholar 

  21. Dahlgren, A. & Ryden-Aulin, M. A novel mutation in ribosomal protein S4 that affects the function of a mutated RF1. Biochimie 82, 683–691 (2000).

    Article  CAS  Google Scholar 

  22. Kaczanowska, M. & Ryden-Aulin, M. Temperature sensitivity caused by mutant release factor 1 is suppressed by mutations that affect 16S rRNA maturation. J. Bacteriol. 186, 3046–3055 (2004).

    Article  CAS  Google Scholar 

  23. Wang, L., Zhang, Z., Brock, A. & Schultz, P.G. Addition of the keto functional group to the genetic code of Escherichia coli. Proc. Natl. Acad. Sci. USA 100, 56–61 (2003).

    Article  CAS  Google Scholar 

  24. Tsien, R.Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998).

    Article  CAS  Google Scholar 

  25. Wang, L., Xie, J., Deniz, A.A. & Schultz, P.G. Unnatural amino acid mutagenesis of green fluorescent protein. J. Org. Chem. 68, 174–176 (2003).

    Article  CAS  Google Scholar 

  26. Huang, Y. et al. A convenient method for genetic incorporation of multiple noncanonical amino acids into one protein in Escherichia coli. Mol. Biosyst. 6, 683–686 (2010).

    Article  CAS  Google Scholar 

  27. Chen, S., Schultz, P.G. & Brock, A. An improved system for the generation and analysis of mutant proteins containing unnatural amino acids in Saccharomyces cerevisiae. J. Mol. Biol. 371, 112–122 (2007).

    Article  CAS  Google Scholar 

  28. Abe, H., Abo, T. & Aiba, H. Regulation of intrinsic terminator by translation in Escherichia coli: transcription termination at a distance downstream. Genes Cells 4, 87–97 (1999).

    Article  CAS  Google Scholar 

  29. Ueda, K. et al. Bacterial SsrA system plays a role in coping with unwanted translational readthrough caused by suppressor tRNAs. Genes Cells 7, 509–519 (2002).

    Article  CAS  Google Scholar 

  30. Takimoto, J.K., Adams, K.L., Xiang, Z. & Wang, L. Improving orthogonal tRNA-synthetase recognition for efficient unnatural amino acid incorporation and application in mammalian cells. Mol. Biosyst. 5, 931–934 (2009).

    Article  CAS  Google Scholar 

  31. Schrader, J.M., Chapman, S.J. & Uhlenbeck, O.C. Tuning the affinity of aminoacyl-tRNA to elongation factor Tu for optimal decoding. Proc. Natl. Acad. Sci. USA 108, 5215–5220 (2011).

    Article  CAS  Google Scholar 

  32. Ledoux, S. & Uhlenbeck, O.C. Different aa-tRNAs are selected uniformly on the ribosome. Mol. Cell 31, 114–123 (2008).

    Article  CAS  Google Scholar 

  33. Yokoyama, S. & Nishimura, S. Modified nucleosides and codon recognition in tRNA: Structure, Biosynthesis, and Function (eds. Soll, D. & RajBhandary, U.L.) 207–223 (ASM Press, 1995).

  34. Kane, J.F. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr. Opin. Biotechnol. 6, 494–500 (1995).

    Article  CAS  Google Scholar 

  35. Mukai, T. et al. Codon reassignment in the Escherichia coli genetic code. Nucleic Acids Res. 38, 8188–8195 (2010).

    Article  CAS  Google Scholar 

  36. Richardson, S.M., Wheelan, S.J., Yarrington, R.M. & Boeke, J.D. GeneDesign: rapid, automated design of multikilobase synthetic genes. Genome Res. 16, 550–556 (2006).

    Article  CAS  Google Scholar 

  37. Agafonov, D.E., Kolb, V.A. & Spirin, A.S. Ribosome-associated protein that inhibits translation at the aminoacyl-tRNA binding stage. EMBO Rep. 2, 399–402 (2001).

    Article  CAS  Google Scholar 

  38. Lee, J.H., Yeo, W.S. & Roe, J.H. Induction of the sufA operon encoding Fe-S assembly proteins by superoxide generators and hydrogen peroxide: involvement of OxyR, IHF and an unidentified oxidant-responsive factor. Mol. Microbiol. 51, 1745–1755 (2004).

    Article  CAS  Google Scholar 

  39. Luger, K., Rechsteiner, T.J. & Richmond, T.J. Preparation of nucleosome core particle from recombinant histones. Methods Enzymol. 304, 3–19 (1999).

    Article  CAS  Google Scholar 

  40. Ossowski, S. et al. Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Res. 18, 2024–2033 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to R. Sauer (MIT) for providing strain X90 ssrA1::cat, to L. Isaksson (Stockholm University) for providing strain MRA8, to W. Liu (Texas A&M University) for providing plasmid pET-L11C and to J. Kadonaga (University of California San Diego) for suggestions on H3a purification. We thank V.K. Lacey for proofreading the manuscript. J.X. was partially funded by the Pioneer Fellowship. M.D.S. was supported by National Science Foundation IGERT training grant (DGE-0504645). R.J.S. was supported by an US National Institutes of Health National Research Service Award postdoctoral fellowship (F32-HG004830). J.R.E. acknowledges support from the Mary K. Chapman Foundation. L.W. acknowledges support from the Ray Thomas Edwards Foundation, Searle Scholar Program (06-l-119), Beckman Young Investigator Program, March of Dimes Foundation (#5-FY08-110), California Institute for Regenerative Medicine (RN1-00577-1) and US National Institutes of Health (1DP2OD004744-01).

Author information

Authors and Affiliations

Authors

Contributions

D.B.F.J. incorporated tyrosine and various Uaas into EGFP and histone H3a using JX33, characterized JX2.0 and JX3.0 strains with growth, western, fluorescence, and temperature-sensitive complementation assays, performed endogenous UAG suppression studies, analyzed the data and wrote the manuscript; J.X. generated the RF1-knockout strains and analyzed the data; Z.S. and S.P.B. characterized amino acid and Uaa incorporation with mass spectrometry, analyzed the data and wrote the mass spectrometry section; J.K.T. incorporated Uaa into GST, compared Uaa incorporation efficiency in JX33 and in BL21 expressing L11C and analyzed the data; M.D.S., R.J.S. and J.R.E. sequenced all E. coli strains described, analyzed the data and wrote the genomic sequencing section; Z.X. synthesized Uaas; L.W. conceived and directed the project, analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Lei Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 2466 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, D., Xu, J., Shen, Z. et al. RF1 knockout allows ribosomal incorporation of unnatural amino acids at multiple sites. Nat Chem Biol 7, 779–786 (2011). https://doi.org/10.1038/nchembio.657

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.657

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing