Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

SAS-6 oligomerization: the key to the centriole?

Centrioles are among the most beautiful of biological structures. How their highly conserved nine-fold symmetry is generated is a question that has intrigued cell biologists for decades. Two recent structural studies provide the tantalizing suggestion that the self-organizing properties of the SAS-6 protein hold the answer.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic view of centrioles and the early stages of centriole duplication.
Figure 2: The architecture and interactions of SAS-6.
Figure 3: An illustration of the distinct SAS-6 oligomer models that can be derived from slightly different dimer orientations observed in the SAS-6 crystal structures.

Accession codes

Accessions

Protein Data Bank

References

  1. Nigg, E.A. & Raff, J.W. Cell 139, 663–678 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Hiraki, M., Nakazawa, Y., Kamiya, R. & Hirono, M. Curr. Biol. 17, 1778–1783 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Nakazawa, Y., Hiraki, M., Kamiya, R. & Hirono, M. Curr. Biol. 17, 2169–2174 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Keller, L.C. et al. Mol. Biol. Cell 20, 1150–1166 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kilburn, C.L. et al. J. Cell Biol. 178, 905–912 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bettencourt-Dias, M. & Glover, D.M. Nat. Rev. Mol. Cell Biol. 8, 451–463 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Strnad, P. & Gonczy, P. Trends Cell Biol. 18, 389–396 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Dix, C.I. & Raff, J.W. Curr. Biol. 17, 1759–1764 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Giansanti, M.G., Bucciarelli, E., Bonaccorsi, S. & Gatti, M. Curr. Biol. 18, 303–309 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Gomez-Ferreria, M.A. et al. Curr. Biol. 17, 1960–1966 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Zhu, F. et al. Curr. Biol. 18, 136–141 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Gopalakrishnan, J. et al. J. Biol. Chem. 285, 8759–8770 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Peel, N., Stevens, N.R., Basto, R. & Raff, J.W. Curr. Biol. 17, 834–843 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rodrigues-Martins, A. et al. Curr. Biol. 17, 1465–1472 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Stevens, N.R., Roque, H. & Raff, J.W. Dev. Cell 19, 913–919 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kitagawa, D. et al. Cell 144, 364–375 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. van Breugel, M. et al. Science 331, 1196–1199 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Stevens, N.R., Dobbelaere, J., Brunk, K., Franz, A. & Raff, J.W. J. Cell Biol. 188, 313–323 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Matsuura, K., Lefebvre, P.A., Kamiya, R. & Hirono, M. J. Cell Biol. 165, 663–671 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dobbelaere, J. et al. PLoS Biol. 6, e224 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kleylein-Sohn, J. et al. Dev. Cell 13, 190–202 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Mottier-Pavie, V. & Megraw, T.L. Mol. Biol. Cell 20, 2605–2614 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordan W Raff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cottee, M., Raff, J., Lea, S. et al. SAS-6 oligomerization: the key to the centriole?. Nat Chem Biol 7, 650–653 (2011). https://doi.org/10.1038/nchembio.660

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.660

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing