Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Seeing the future of bioactive lipid drug targets

Bioactive lipid signaling allows individual cells within the body to 'see' the surrounding environment and to respond in ways that will benefit the whole organism. Successful drug development for bioactive lipid targets requires a deep knowledge of the biology and pathobiology of each specific lipid signaling pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bioactive lipid synthesis, metabolism and signaling pathways.
Figure 2: Discovery paradigm for a small-molecule drug for a bioactive lipid target.
Figure 3: A homology tree of several families of human GPCRs.

References

  1. Brown, H.A. & Murphy, R.C. Nat. Chem. Biol. 5, 602–606 (2009).

    Article  CAS  Google Scholar 

  2. Hotamisligil, G.S. & Erbay, E. Nat. Rev. Immunol. 8, 923–934 (2008).

    Article  CAS  Google Scholar 

  3. Panupinthu, N., Lee, N.Y. & Mills, G.B. Br. J. Cancer 102, 941–946 (2010).

    Article  CAS  Google Scholar 

  4. Hla, T. Prostaglandins Other Lipid Mediat. 77, 197–209 (2005).

  5. Ben-Shlomo, I. & Hseuh, A.J.W. Mol. Endocrinol. 19, 1097–1109 (2005).

    Article  CAS  Google Scholar 

  6. Zhang, M.Q. & Wilkinson, B. Curr. Opin. Biotechnol. 18, 478–488 (2007).

    Article  CAS  Google Scholar 

  7. Varshney, A. et al. Chirality 22, 77–87 (2010).

    Article  CAS  Google Scholar 

  8. The International Transporter Consortium et al. Nat. Rev. Drug Discov. 9, 215–236 (2010).

  9. Gabrielsson, J. & Green, A.R. J. Pharmacol. Exp. Ther. 331, 767–774 (2009).

    Article  CAS  Google Scholar 

  10. Chawla, A., Repa, J.J., Evans, R. & Manglesdorf, D.J. Science 294, 1866–1870 (2001).

    Article  CAS  Google Scholar 

  11. Shi, Y. Drug Discov. Today 12, 440–445 (2007).

    Article  CAS  Google Scholar 

  12. Frimurer, T.M. et al. Bioorg. Med. Chem. Lett. 15, 3707–3712 (2005).

    Article  CAS  Google Scholar 

  13. Hirai, H. et al. J. Exp. Med. 193, 255–261 (2001).

    Article  CAS  Google Scholar 

  14. Stebbins, K.J. et al. J. Pharmacol. Exp. Ther. 332, 764–775 (2010).

    Article  CAS  Google Scholar 

  15. Murphy, R.C. & Gijon, M.A. Biochem. J. 405, 379–395 (2007).

    Article  CAS  Google Scholar 

  16. Peters-Golden, M. & Henderson, W.R. N. Engl. J. Med. 357, 1841–1854 (2007).

    Article  CAS  Google Scholar 

  17. Evans, J.F., Ferguson, A.D., Moseley, R.T. & Hutchinson, J.H. Trends Pharmacol. Sci. 29, 72–78 (2008).

    Article  CAS  Google Scholar 

  18. Austen, K.F., Maekawa, A., Kanaoka, Y., & Boyce, J.A. J. Allergy Clin. Immunol. 124, 406–414 (2009).

    Article  CAS  Google Scholar 

  19. Choi, J.W. et al. Annu. Rev. Pharmacol. Toxicol. 50, 157–186 (2010).

    Article  CAS  Google Scholar 

  20. Hannun, Y.A. & Obeid, A.M. Nat. Rev. Mol. Cell Biol. 9, 139–150 (2008).

    Article  CAS  Google Scholar 

  21. Tager, A.M. et al. Nat. Med. 14, 45–54 (2008).

    Article  CAS  Google Scholar 

  22. Okudaira, S., Yukiura, H. & Aoki, J. Biochimie published online, doi: 10.1016/j.biochi.2010.04.015 (22 April 2010).

  23. Patrono, C. & Baigent, C. Mol. Interv. 9, 31–39 (2009).

    Article  CAS  Google Scholar 

  24. Smyth, E.M., Grosser, T., Wang, M., Yu, Y. & Fitzgerald, G.A. J. Lipid Res. 50, S423–S428 (2009).

    Article  Google Scholar 

  25. Grosser, T., Yu, Y. & Fitzgerald, G.A. Annu. Rev. Med. 61, 17–33 (2010).

    Article  CAS  Google Scholar 

  26. Ashley, E.A. et al. Lancet 375, 1525–1535 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank T. Yokomizo (Kyushu University) for generously supplying Figure 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jilly F Evans.

Ethics declarations

Competing interests

J.F.E. and J.H.H. are full-time employees of Amira Pharmaceuticals, a biopharmaceutical company developing drugs for bioactive lipid targets.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, J., Hutchinson, J. Seeing the future of bioactive lipid drug targets. Nat Chem Biol 6, 476–479 (2010). https://doi.org/10.1038/nchembio.394

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.394

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research