Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Translation of the phosphoinositide code by PI effectors

Abstract

Phosphoinositide (PI) lipids are essential components of eukaryotic cell membranes. They are produced by mono-, bis- and trisphosphorylation of the inositol headgroup of phosphatidylinositol (PtdIns) and are concentrated in separate pools of cytosolic membranes. PIs serve as markers of the cell compartments and form unique docking sites for protein effectors. Collectively, seven known PIs, the protein effectors that bind them and enzymes that generate or modify PIs compose a remarkably complex protein-lipid signaling network. A number of cytosolic proteins contain one or several effector modules capable of recognizing individual PIs and recruiting the host proteins to distinct intracellular compartment. The recently determined atomic-resolution structures and membrane-targeting mechanisms of a dozen PI effectors have provided insights into the molecular basis for regulation of endocytic membrane trafficking and signaling. In this review, I highlight the structural aspects of the deciphering of the 'PI code' by the most common PI-recognizing effectors and discuss the mechanistic details of their membrane anchoring.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Subcellular localization of Pls.
Figure 2: PI-recognizing effectors.
Figure 3: Molecular mechanism of PI recognition.
Figure 4: The structural basis for deciphering the PI code.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Lemmon, M.A. Membrane recognition by phospholipid-binding domains. Nat. Rev. Mol. Cell Biol. 9, 99–111 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Hurley, J.H. Membrane binding domains. Biochim Biophys Acta 1761, 805–811 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Roth, M.G. Phosphoinositides in constitutive membrane traffic. Physiol. Rev. 84, 699–730 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Vanhaesebroeck, B. et al. Synthesis and function of 3-phosphorylated inositol lipids. Annu. Rev. Biochem. 70, 535–602 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Harlan, J.E., Hajduk, P.J., Yoon, H.S. & Fesik, S.W. Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate. Nature 371, 168–170 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Kutateladze, T.G. Phosphatidylinositol 3-phosphate recognition and membrane docking by the FYVE domain. Biochim. Biophys. Acta 1761, 868–877 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Burd, C.G. & Emr, S.D. Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains. Mol. Cell 2, 157–162 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Gaullier, J.M. et al. FYVE fingers bind PtdIns(3)P. Nature 394, 432–433 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Patki, V., Lawe, D.C., Corvera, S., Virbasius, J.V. & Chawla, A. A functional PtdIns(3)P-binding motif. Nature 394, 433–434 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Ridley, S.H. et al. FENS-1 and DFCP1 are FYVE domain–containing proteins with distinct functions in the endosomal and Golgi compartments. J. Cell Sci. 114, 3991–4000 (2001).

    CAS  PubMed  Google Scholar 

  12. Simonsen, A. et al. Alfy, a novel FYVE-domain-containing protein associated with protein granules and autophagic membranes. J. Cell Sci. 117, 4239–4251 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Gillooly, D.J., Simonsen, A. & Stenmark, H. Cellular functions of phosphatidylinositol 3-phosphate and FYVE domain proteins. Biochem. J. 355, 249–258 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stahelin, R.V. et al. Phosphatidylinositol 3-phosphate induces the membrane penetration of the FYVE domains of Vps27p and Hrs. J. Biol. Chem. 277, 26379–26388 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Diraviyam, K., Stahelin, R.V., Cho, W. & Murray, D. Computer modeling of the membrane interaction of FYVE domains. J. Mol. Biol. 328, 721–736 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Kutateladze, T.G. et al. Multivalent mechanism of membrane insertion by the FYVE domain. J. Biol. Chem. 279, 3050–3057 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Lee, S.A. et al. Targeting of the FYVE domain to endosomal membranes is regulated by a histidine switch. Proc. Natl. Acad. Sci. USA 102, 13052–13057 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. He, J. et al. Membrane insertion of the FYVE domain is modulated by pH. Proteins 76, 852–860 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mertens, H.D., Callaghan, J.M., Swarbrick, J.D., McConville, M.J. & Gooley, P.R. A high-resolution solution structure of a trypanosomatid FYVE domain. Protein Sci. 16, 2552–2559 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Misra, S. & Hurley, J.H. Crystal structure of a phosphatidylinositol 3-phosphate-specific membrane-targeting motif, the FYVE domain of Vps27p. Cell 97, 657–666 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Kutateladze, T. & Overduin, M. Structural mechanism of endosome docking by the FYVE domain. Science 291, 1793–1796 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Blatner, N.R. et al. The molecular basis of the differential subcellular localization of FYVE domains. J. Biol. Chem. 279, 53818–53827 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Sankaran, V.G., Klein, D.E., Sachdeva, M.M. & Lemmon, M.A. High affinity binding of a FYVE domain to phosphatidylinositol 3-phosphate requires intact phospholipid but not FYVE domain oligomerization. Biochemistry 40, 8581–8587 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Brunecky, R. et al. Investigation of the binding geometry of a peripheral membrane protein. Biochemistry 44, 16064–16071 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Callaghan, J., Simonsen, A., Gaullier, J.M., Toh, B.H. & Stenmark, H. The endosome fusion regulator early-endosomal autoantigen 1 (EEA1) is a dimer. Biochem. J. 338, 539–543 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dumas, J.J. et al. Multivalent endosome targeting by homodimeric EEA1. Mol. Cell 8, 947–958 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Lawe, D.C., Patki, V., Heller-Harrison, R., Lambright, D. & Corvera, S. The FYVE domain of early endosome antigen 1 is required for both phosphatidylinositol 3-phosphate and Rab5 binding. Critical role of this dual interaction for endosomal localization. J. Biol. Chem. 275, 3699–3705 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Hayakawa, A. et al. Structural basis for endosomal targeting by FYVE domains. J. Biol. Chem. 279, 5958–5966 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Mao, Y. et al. Crystal structure of the VHS and FYVE tandem domains of Hrs, a protein involved in membrane trafficking and signal transduction. Cell 100, 447–456 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Lemmon, M.A. & Ferguson, K.M. Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem. J. 350, 1–18 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. DiNitto, J.P. & Lambright, D.G. Membrane and juxtamembrane targeting by PH and PTB domains. Biochim. Biophys. Acta 1761, 850–867 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Haslam, R.J., Koide, H.B. & Hemmings, B.A. Pleckstrin domain homology. Nature 363, 309–310 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Mayer, B.J., Ren, R., Clark, K.L. & Baltimore, D. A putative modular domain present in diverse signaling proteins. Cell 73, 629–630 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Fukuda, M., Kojima, T., Kabayama, H. & Mikoshiba, K. Mutation of the pleckstrin homology domain of Bruton's tyrosine kinase in immunodeficiency impaired inositol 1,3,4,5-tetrakisphosphate binding capacity. J. Biol. Chem. 271, 30303–30306 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Klarlund, J.K. et al. Signaling by phosphoinositide-3,4,5-trisphosphate through proteins containing pleckstrin and Sec7 homology domains. Science 275, 1927–1930 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Cronin, T.C., DiNitto, J.P., Czech, M.P. & Lambright, D.G. Structural determinants of phosphoinositide selectivity in splice variants of Grp1 family PH domains. EMBO J. 23, 3711–3720 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lemmon, M.A. Pleckstrin homology domains: not just for phosphoinositides. Biochem. Soc. Trans. 32, 707–711 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Singh, S.M. & Murray, D. Molecular modeling of the membrane targeting of phospholipase C pleckstrin homology domains. Protein Sci. 12, 1934–1953 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Manna, D., Albanese, A., Park, W.S. & Cho, W. Mechanistic basis of differential cellular responses of phosphatidylinositol 3,4-bisphosphate- and phosphatidylinositol 3,4,5-trisphosphate-binding pleckstrin homology domains. J. Biol. Chem. 282, 32093–32105 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. He, J. et al. Molecular mechanism of membrane targeting by the GRP1 PH domain. J. Lipid Res. 49, 1807–1815 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Knight, J.D. & Falke, J.J. Single-molecule fluorescence studies of a PH domain: new insights into the membrane docking reaction. Biophys. J. 96, 566–582 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ferguson, K.M. et al. Structural basis for discrimination of 3-phosphoinositides by pleckstrin homology domains. Mol. Cell 6, 373–384 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Lietzke, S.E. et al. Structural basis of 3-phosphoinositide recognition by pleckstrin homology domains. Mol. Cell 6, 385–394 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Flesch, F.M., Yu, J.W., Lemmon, M.A. & Burger, K.N. Membrane activity of the phospholipase C-delta1 pleckstrin homology (PH) domain. Biochem. J. 389, 435–441 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stahelin, R.V., Karathanassis, D., Murray, D., Williams, R.L. & Cho, W. Structural and membrane binding analysis of the Phox homology domain of Bem1p: basis of phosphatidylinositol 4-phosphate specificity. J. Biol. Chem. 282, 25737–25747 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Komander, D. et al. Structural insights into the regulation of PDK1 by phosphoinositides and inositol phosphates. EMBO J. 23, 3918–3928 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Baraldi, E. et al. Structure of the PH domain from Bruton′s tyrosine kinase in complex with inositol 1,3,4,5-tetrakisphosphate. Structure 7, 449–460 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. DiNitto, J.P. et al. Structural basis and mechanism of autoregulation in 3-phosphoinositide-dependent Grp1 family Arf GTPase exchange factors. Mol. Cell 28, 569–583 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Thomas, C.C., Deak, M., Alessi, D.R. & van Aalten, D.M. High-resolution structure of the pleckstrin homology domain of protein kinase b/akt bound to phosphatidylinositol (3,4,5)-trisphosphate. Curr. Biol. 12, 1256–1262 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Milburn, C.C. et al. Binding of phosphatidylinositol 3,4,5-trisphosphate to the pleckstrin homology domain of protein kinase B induces a conformational change. Biochem. J. 375, 531–538 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Carpten, J.D. et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448, 439–444 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Ferguson, K.M., Lemmon, M.A., Schlessinger, J. & Sigler, P.B. Structure of the high affinity complex of inositol trisphosphate with a phospholipase C pleckstrin homology domain. Cell 83, 1037–1046 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Jackson, S.G., Zhang, Y., Haslam, R.J. & Junop, M.S. Structural analysis of the carboxy terminal PH domain of pleckstrin bound to D-myo-inositol 1,2,3,5,6-pentakisphosphate. BMC Struct. Biol. 7, 80 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ceccarelli, D.F. et al. Non-canonical interaction of phosphoinositides with pleckstrin homology domains of Tiam1 and ArhGAP9. J. Biol. Chem. 282, 13864–13874 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Hyvönen, M. et al. Structure of the binding site for inositol phosphates in a PH domain. EMBO J. 14, 4676–4685 (1995).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Seet, L.F. & Hong, W. The Phox (PX) domain proteins and membrane traffic. Biochim. Biophys. Acta 1761, 878–896 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Ponting, C.P. et al. Novel domains in NADPH oxidase subunits, sorting nexins, and PtdIns 3-kinases: binding partners of SH3 domains? Protein Sci. 5, 2353–2357 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yu, J.W. & Lemmon, M.A. All phox homology (PX) domains from Saccharomyces cerevisiae specifically recognize phosphatidylinositol-3-phosphate. J. Biol. Chem. 276, 44179–44184 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Kanai, F. et al. The PX domains of p47phox and p40phox bind to lipid products of PI(3)K. Nat. Cell Biol. 3, 675–678 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Xu, Y., Hortsman, H., Seet, L., Wong, S.H. & Hong, W. SNX3 regulates endosomal function through its PX-domain-mediated interaction with PtdIns(3)P. Nat. Cell Biol. 3, 658–666 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Cheever, M.L. et al. Phox domain interaction with PtdIns(3)P targets the Vam7 t-SNARE to vacuole membranes. Nat. Cell Biol. 3, 613–618 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Ellson, C.D. et al. PtdIns(3)P regulates the neutrophil oxidase complex by binding to the PX domain of p40(phox). Nat. Cell Biol. 3, 679–682 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Song, X. et al. Phox homology domains specifically bind phosphatidylinositol phosphates. Biochemistry 40, 8940–8944 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Málková, S., Stahelin, R.V., Pingali, S.V., Cho, W. & Schlossman, M.L. Orientation and penetration depth of monolayer-bound p40phox-PX. Biochemistry 45, 13566–13575 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Stahelin, R.V., Burian, A., Bruzik, K.S., Murray, D. & Cho, W. Membrane binding mechanisms of the PX domains of NADPH oxidase p40phox and p47phox. J. Biol. Chem. 278, 14469–14479 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Lee, S.A. et al. Molecular mechanism of membrane docking by the Vam7p PX domain. J. Biol. Chem. 281, 37091–37101 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Bravo, J. et al. The crystal structure of the PX domain from p40(phox) bound to phosphatidylinositol 3-phosphate. Mol. Cell 8, 829–839 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Karathanassis, D. et al. Binding of the PX domain of p47(phox) to phosphatidylinositol 3,4-bisphosphate and phosphatidic acid is masked by an intramolecular interaction. EMBO J. 21, 5057–5068 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhou, C.Z. et al. Crystal structure of the yeast Phox homology (PX) domain protein Grd19p complexed to phosphatidylinositol-3-phosphate. J. Biol. Chem. 278, 50371–50376 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Lu, J., Garcia, J., Dulubova, I., Sudhof, T.C. & Rizo, J. Solution structure of the Vam7p PX domain. Biochemistry 41, 5956–5962 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Hiroaki, H., Ago, T., Ito, T., Sumimoto, H. & Kohda, D. Solution structure of the PX domain, a target of the SH3 domain. Nat. Struct. Biol. 8, 526–530 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Xing, Y. et al. Structural basis of membrane targeting by the Phox homology domain of cytokine-independent survival kinase (CISK-PX). J. Biol. Chem. 279, 30662–30669 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Kutateladze, T.G. Mechanistic similarities in docking of the FYVE and PX domains to phosphatidylinositol 3-phosphate containing membranes. Prog. Lipid Res. 46, 315–327 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Stahelin, R.V. et al. Mechanism of membrane binding of the phospholipase D1 PX domain. J. Biol. Chem. 279, 54918–54926 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Stahelin, R.V. et al. Structural and membrane binding analysis of the Phox homology domain of phosphoinositide 3-kinase-C2alpha. J. Biol. Chem. 281, 39396–39406 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Pylypenko, O., Lundmark, R., Rasmuson, E., Carlsson, S.R. & Rak, A. The PX-BAR membrane-remodeling unit of sorting nexin 9. EMBO J. 26, 4788–4800 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Blatner, N.R. et al. The structural basis of novel endosome anchoring activity of KIF16B kinesin. EMBO J. 26, 3709–3719 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Honbou, K. et al. Full-length p40phox structure suggests a basis for regulation mechanism of its membrane binding. EMBO J. 26, 1176–1186 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Parkinson, G.N., Vines, D., Driscoll, P.C. & Djordjevic, S. Crystal structures of PI3K–C2alpha PX domain indicate conformational change associated with ligand binding. BMC Struct. Biol. 8, 13 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhong, Q. et al. Determinants of the endosomal localization of sorting nexin 1. Mol. Biol. Cell 16, 2049–2057 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Song, J., Zhao, K.Q., Newman, C.L., Vinarov, D.A. & Markley, J.L. Solution structure of human sorting nexin 22. Protein Sci. 16, 807–814 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Itoh, T. & De Camilli, P. BAR, F-BAR (EFC) and ENTH/ANTH domains in the regulation of membrane-cytosol interfaces and membrane curvature. Biochim. Biophys. Acta 1761, 897–912 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Cho, W. & Stahelin, R.V. Membrane binding and subcellular targeting of C2 domains. Biochim. Biophys. Acta 1761, 838–849 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Hamada, K., Shimizu, T., Matsui, T., Tsukita, S. & Hakoshima, T. Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain. EMBO J. 19, 4449–4462 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dippold, H.C. et al. GOLPH3 bridges phosphatidylinositol-4- phosphate and actomyosin to stretch and shape the Golgi to promote budding. Cell 139, 337–351 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wood, C.S. et al. PtdIns4P recognition by Vps74/GOLPH3 links PtdIns 4-kinase signaling to retrograde Golgi trafficking. J. Cell Biol. 187, 967–975 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zimmermann, P. The prevalence and significance of PDZ domain-phosphoinositide interactions. Biochim. Biophys. Acta 1761, 947–956 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Dove, S.K., Dong, K., Kobayashi, T., Williams, F.K. & Michell, R.H. Phosphatidylinositol 3,5-bisphosphate and Fab1p/PIKfyve underPPIn endo-lysosome function. Biochem. J. 419, 1–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Santagata, S. et al. G-protein signaling through tubby proteins. Science 292, 2041–2050 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Szentpetery, Z., Balla, A., Kim, Y.J., Lemmon, M.A. & Balla, T. Live cell imaging with protein domains capable of recognizing phosphatidylinositol 4,5-bisphosphate; a comparative study. BMC Cell Biol. 10, 67 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang, J., Arbuzova, A., Hangyas-Mihalyne, G. & McLaughlin, S. The effector domain of myristoylated alanine-rich C kinase substrate binds strongly to phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 276, 5012–5019 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Caroni, P. New EMBO members' review: actin cytoskeleton regulation through modulation of PI(4,5)P(2) rafts. EMBO J. 20, 4332–4336 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dell'Acqua, M.L., Faux, M.C., Thorburn, J., Thorburn, A. & Scott, J.D. Membrane-targeting sequences on AKAP79 bind phosphatidylinositol-4, 5-bisphosphate. EMBO J. 17, 2246–2260 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Goldschmidt-Clermont, P.J., Machesky, L.M., Baldassare, J.J. & Pollard, T.D. The actin-binding protein profilin binds to PIP2 and inhibits its hydrolysis by phospholipase C. Science 247, 1575–1578 (1990).

    Article  CAS  PubMed  Google Scholar 

  95. Rohatgi, R., Ho, H.Y. & Kirschner, M.W. Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4, 5-bisphosphate. J. Cell Biol. 150, 1299–1310 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ford, M.G. et al. Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science 291, 1051–1055 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Ford, M.G. et al. Curvature of clathrin-coated pits driven by epsin. Nature 419, 361–366 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. McCrea, H.J. & De Camilli, P. Mutations in phosphoinositide metabolizing enzymes and human disease. Physiology (Bethesda) 24, 8–16 (2009).

    CAS  Google Scholar 

  99. Prestwich, G.D. Phosphoinositide signaling; from affinity probes to pharmaceutical targets. Chem. Biol. 11, 619–637 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Engelman, J.A., Luo, J. & Cantley, L.C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 7, 606–619 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research in T.G.K.'s laboratory is supported by the US National Institutes of Health grants GM 071424 and CA 113472.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana G Kutateladze.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutateladze, T. Translation of the phosphoinositide code by PI effectors. Nat Chem Biol 6, 507–513 (2010). https://doi.org/10.1038/nchembio.390

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.390

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing