Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-poisoning of Mycobacterium tuberculosis by targeting GlgE in an α-glucan pathway

Abstract

New chemotherapeutics are urgently required to control the tuberculosis pandemic. We describe a new pathway from trehalose to α-glucan in Mycobacterium tuberculosis comprising four enzymatic steps mediated by TreS, Pep2, GlgE (which has been identified as a maltosyltransferase that uses maltose 1-phosphate) and GlgB. Using traditional and chemical reverse genetics, we show that GlgE inactivation causes rapid death of M. tuberculosis in vitro and in mice through a self-poisoning accumulation of maltose 1-phosphate. Poisoning elicits pleiotropic phosphosugar-induced stress responses promoted by a self-amplifying feedback loop where trehalose-forming enzymes are upregulated. Moreover, the pathway from trehalose to α-glucan exhibited a synthetic lethal interaction with the glucosyltransferase Rv3032, which is involved in biosynthesis of polymethylated α-glucans, because key enzymes in each pathway could not be simultaneously inactivated. The unique combination of maltose 1-phosphate toxicity and gene essentiality within a synthetic lethal pathway validates GlgE as a distinct potential drug target that exploits new synergistic mechanisms to induce death in M. tuberculosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of the M. smegmatis ΔglgE mutant.
Figure 2: GlgE is a new M1P-dependent maltosyltransferase.
Figure 3: A new prokaryotic pathway from trehalose to α-glucan.
Figure 4: M1P self-poisoning is lethal for Mtb grown in vitro and in mice.
Figure 5: Whole-genome transcriptional profiling of the M1P-induced stress response in Mtb.
Figure 6: Synthetic lethality of treS and Rv3032.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Dye, C. Global epidemiology of tuberculosis. Lancet 367, 938–940 (2006).

    Article  Google Scholar 

  2. Sassetti, C.M., Boyd, D.H. & Rubin, E.J. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol. 48, 77–84 (2003).

    Article  CAS  Google Scholar 

  3. Sassetti, C.M. & Rubin, E.J. Genetic requirements for mycobacterial survival during infection. Proc. Natl. Acad. Sci. USA 100, 12989–12994 (2003).

    Article  CAS  Google Scholar 

  4. Tong, A.H. et al. Global mapping of the yeast genetic interaction network. Science 303, 808–813 (2004).

    Article  CAS  Google Scholar 

  5. Boone, C., Bussey, H. & Andrews, B.J. Exploring genetic interactions and networks with yeast. Nat. Rev. Genet. 8, 437–449 (2007).

    Article  CAS  Google Scholar 

  6. Belanger, A.E. & Hatfull, G.F. Exponential-phase glycogen recycling is essential for growth of Mycobacterium smegmatis. J. Bacteriol. 181, 6670–6678 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Garg, S.K., Alam, M.S., Kishan, K.V. & Agrawal, P. Expression and characterization of alpha-(1,4)-glucan branching enzyme Rv1326c of Mycobacterium tuberculosis H37Rv. Protein Expr. Purif. 51, 198–208 (2007).

    Article  CAS  Google Scholar 

  8. Sambou, T. et al. Capsular glucan and intracellular glycogen of Mycobacterium tuberculosis: biosynthesis and impact on the persistence in mice. Mol. Microbiol. 70, 762–774 (2008).

    Article  CAS  Google Scholar 

  9. Pan, Y.T. et al. Trehalose synthase converts glycogen to trehalose. FEBS J. 275, 3408–3420 (2008).

    Article  CAS  Google Scholar 

  10. Pan, Y.T. et al. Trehalose synthase of Mycobacterium smegmatis: purification, cloning, expression, and properties of the enzyme. Eur. J. Biochem. 271, 4259–4269 (2004).

    Article  CAS  Google Scholar 

  11. Jarling, M., Cauvet, T., Grundmeier, M., Kuhnert, K. & Pape, H. Isolation of mak1 from Actinoplanes missouriensis and evidence that Pep2 from Streptomyces coelicolor is a maltokinase. J. Basic Microbiol. 44, 360–373 (2004).

    Article  CAS  Google Scholar 

  12. Usui, T. et al. Proton magnetic resonance spectra of D-gluco-oligosaccharides and D-glucans. Carbohydr. Res. 33, 105–116 (1974).

    Article  CAS  Google Scholar 

  13. Bosch, A.M. Classical galactosaemia revisited. J. Inherit. Metab. Dis. 29, 516–525 (2006).

    Article  CAS  Google Scholar 

  14. Slepak, T., Tang, M., Addo, F. & Lai, K. Intracellular galactose-1-phosphate accumulation leads to environmental stress response in yeast model. Mol. Genet. Metab. 86, 360–371 (2005).

    Article  CAS  Google Scholar 

  15. Yarmolinsky, M.B., Wiesmeyer, H., Kalckar, H.M. & Jordan, E. Hereditary defects in galactose metabolism in Escherichia coli mutants, II. Galactose-induced sensitivity. Proc. Natl. Acad. Sci. USA 45, 1786–1791 (1959).

    Article  CAS  Google Scholar 

  16. Streeter, J.G. & Gomez, M.L. Three enzymes for trehalose synthesis in Bradyrhizobium cultured bacteria and in bacteroids from soybean nodules. Appl. Environ. Microbiol. 72, 4250–4255 (2006).

    Article  CAS  Google Scholar 

  17. Karakousis, P.C., Williams, E.P. & Bishai, W.R. Altered expression of isoniazid-regulated genes in drug-treated dormant Mycobacterium tuberculosis. J. Antimicrob. Chemother. 61, 323–331 (2008).

    Article  CAS  Google Scholar 

  18. Boshoff, H.I. et al. The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J. Biol. Chem. 279, 40174–40184 (2004).

    Article  CAS  Google Scholar 

  19. Manjunatha, U., Boshoff, H.I. & Barry, C.E. The mechanism of action of PA-824: novel insights from transcriptional profiling. Commun. Integr. Biol. 2, 215–218 (2009).

    Article  CAS  Google Scholar 

  20. Kumar, A. et al. Heme oxygenase-1-derived carbon monoxide induces the Mycobacterium tuberculosis dormancy regulon. J. Biol. Chem. 283, 18032–18039 (2008).

    Article  CAS  Google Scholar 

  21. Voskuil, M.I. et al. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J. Exp. Med. 198, 705–713 (2003).

    Article  CAS  Google Scholar 

  22. Dahl, J.L. et al. The role of RelMtb-mediated adaptation to stationary phase in long-term persistence of Mycobacterium tuberculosis in mice. Proc. Natl. Acad. Sci. USA 100, 10026–10031 (2003).

    Article  CAS  Google Scholar 

  23. Boshoff, H.I., Reed, M.B., Barry, C.E. III & Mizrahi, V. DnaE2 polymerase contributes to in vivo survival and the emergence of drug resistance in Mycobacterium tuberculosis. Cell 113, 183–193 (2003).

    Article  CAS  Google Scholar 

  24. Murphy, H.N. et al. The OtsAB pathway is essential for trehalose biosynthesis in Mycobacterium tuberculosis. J. Biol. Chem. 280, 14524–14529 (2005).

    Article  CAS  Google Scholar 

  25. Arguelles, J.C. Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch. Microbiol. 174, 217–224 (2000).

    Article  CAS  Google Scholar 

  26. Jackson, M. & Brennan, P.J. Polymethylated polysaccharides from Mycobacterium species revisited. J. Biol. Chem. 284, 1949–1953 (2009).

    Article  CAS  Google Scholar 

  27. Schneider, D., Bruton, C.J. & Chater, K.F. Duplicated gene clusters suggest an interplay of glycogen and trehalose metabolism during sequential stages of aerial mycelium development in Streptomyces coelicolor A3(2). Mol. Gen. Genet. 263, 543–553 (2000).

    Article  CAS  Google Scholar 

  28. Elbein, A.D., Pastuszak, I., Tackett, A.J., Wilson, T. & Pan, Y.T. The last step in the conversion of trehalose to glycogen: a mycobacterial enzyme that transfers maltose from maltose-1-phosphate to glycogen. J. Biol. Chem. published online, doi:10.1074/jbc.M109.033944 (29 January 2010).

  29. Cantarel, B.L. et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37, D233–D238 (2009).

    Article  CAS  Google Scholar 

  30. Stam, M.R., Danchin, E.G.J., Rancurel, C., Coutinho, P.M. & Henrissat, B. Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Eng. Des. Sel. 19, 555–562 (2006).

    Article  CAS  Google Scholar 

  31. McCarter, J.D. & Withers, S.G. Unequivocal identification of Asp-214 as the catalytic nucleophile of Saccharomyces cerevisiae alpha-glucosidase using 5-fluoro glycosyl fluorides. J. Biol. Chem. 271, 6889–6894 (1996).

    Article  CAS  Google Scholar 

  32. Kaur, D., Guerin, M.E., Skovierova, H., Brennan, P.J. & Jackson, M. Chapter 2 Biogenesis of the cell wall and other glycoconjugates of Mycobacterium tuberculosis. Adv. Appl. Microbiol. 69, 23–78 (2009).

    Article  CAS  Google Scholar 

  33. Elbein, A.D., Pan, Y.T., Pastuszak, I. & Carroll, D. New insights on trehalose: a multifunctional molecule. Glycobiology 13, 17R–27R (2003).

    Article  CAS  Google Scholar 

  34. Kohanski, M.A., Dwyer, D.J., Hayete, B., Lawrence, C.A. & Collins, J.J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130, 797–810 (2007).

    Article  CAS  Google Scholar 

  35. Bardarov, S. et al. Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology 148, 3007–3017 (2002).

    Article  CAS  Google Scholar 

  36. Lanzetta, P.A., Alvarez, L.J., Remack, P.S. & Candia, O.A. An improved assay for nanomole amounts of inorganic phosphate. Anal. Biochem. 100, 95–97 (1979).

    Article  CAS  Google Scholar 

  37. Saeed, A.I. et al. TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34, 374–378 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Hatfull for promoting a collaboration between the Bornemann and Jacobs labs. This work was supported by US National Institutes of Health grants AI26170 (to W.R.J.) and AIO-68135 (Structural Biology of TB Drug Targets), the Albert Einstein College of Medicine Center for AIDS Research grant AIO-51519 and the UK Biotechnology and Biological Sciences Research Council through an Institute Strategic Programme Grant to the John Innes Centre. We thank C. Bruton and K. Chater for access to unpublished data and insightful discussions, D. Hopwood for advice on the manuscript and S. Fairhurst and L. Hill for recording NMR and mass spectra at the John Innes Centre. G.B. acknowledges support in the form of a Personal Research Chair from J. Bardrick (Royal Society Wolfson Research Merit Award, as a former Lister Institute Jenner Research Fellow). G.B. also acknowledges support from The Medical Research Council and the Wellcome Trust (081569/2/06/2). We thank P. Illarionov for discussion of NMR results and the staff in technical services of the University of Birmingham (especially N. Spencer, G. Burns and P. Ashton) for help in the NMR, GC and ES-MS experiments. This paper is dedicated to the late Chris Lamb.

Author information

Authors and Affiliations

Authors

Contributions

R.K., S.B. and W.R.J. coordinated the study. R.K., K.S., U.V., B.W. and K.E.B. performed experiments. R.K., K.S., U.V., B.W., G.B. and S.B. analyzed data. Z.L. and J.C.S. provided reagents. R.K., S.B. and W.R.J. wrote the paper and K.S., U.V., B.W. and G.B. edited the paper.

Corresponding author

Correspondence to William R Jacobs Jr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Methods, Supplementary Figures 1–9 and Supplementary Tables 1–3 (PDF 3023 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalscheuer, R., Syson, K., Veeraraghavan, U. et al. Self-poisoning of Mycobacterium tuberculosis by targeting GlgE in an α-glucan pathway. Nat Chem Biol 6, 376–384 (2010). https://doi.org/10.1038/nchembio.340

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.340

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research