Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Differences in prion strain conformations result from non-native interactions in a nucleus

Abstract

Aggregation-prone proteins often misfold into multiple distinct amyloid conformations that dictate different physiological impacts. Although amyloid formation is triggered by a transient nucleus, the mechanism by which an initial nucleus is formed and allows the protein to form a specific amyloid conformation has been unclear. Here we show that, before fiber formation, the prion domain (Sup35NM, consisting of residues 1–254) of yeast prion Sup35, the [PSI+] protein determinant, forms oligomers in a temperature-dependent, reversible manner. Mutational and biophysical analyses revealed that 'non-native' aromatic interactions outside the amyloid core drive oligomer formation by bringing together different Sup35NM monomers, which specifically leads to the formation of highly infectious strain conformations with more limited amyloid cores. Thus, transient non-native interactions in the initial nucleus are pivotal in determining the diversity of amyloid conformations and resulting prion strain phenotypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sup35NM forms oligomers in a temperature-dependent, reversible manner.
Figure 2: Low-temperature Sup35NM oligomers are on the pathway to formation of Sc4 amyloid fibers.
Figure 3: Distinct amino acid regions in the prion domain of Sup35NM are involved in nucleation and amyloid growth.
Figure 4: Non-native interactions outside of the Sc4 amyloid core drive oligomer formation of Sup35NM.
Figure 5: Global relationships between Sup35NM monomer, initial nucleus, amyloid conformation and prion strain phenotype.

Similar content being viewed by others

References

  1. Chien, P., Weissman, J.S. & DePace, A.H. Emerging principles of conformation-based prion inheritance. Annu. Rev. Biochem. 73, 617–656 (2004).

    Article  CAS  Google Scholar 

  2. Chiti, F. & Dobson, C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006).

    Article  CAS  Google Scholar 

  3. Kodali, R. & Wetzel, R. Polymorphism in the intermediates and products of amyloid assembly. Curr. Opin. Struct. Biol. 17, 48–57 (2007).

    Article  CAS  Google Scholar 

  4. Collinge, J. Prion diseases of humans and animals: their causes and molecular basis. Annu. Rev. Neurosci. 24, 519–550 (2001).

    Article  CAS  Google Scholar 

  5. Wickner, R.B. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264, 566–569 (1994).

    Article  CAS  Google Scholar 

  6. Tuite, M.F. & Koloteva-Levin, N. Propagating prions in fungi and mammals. Mol. Cell 14, 541–552 (2004).

    Article  CAS  Google Scholar 

  7. Tessier, P.M. & Lindquist, S. Unraveling infectious structures, strain variants and species barriers for the yeast prion [PSI+]. Nat. Struct. Mol. Biol. 16, 598–605 (2009).

    Article  CAS  Google Scholar 

  8. Derkatch, I.L., Chernoff, Y.O., Kushnirov, V.V., Inge-Vechtomov, S.G. & Liebman, S.W. Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 144, 1375–1386 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kochneva-Pervukhova, N.V. et al. [PSI+] prion generation in yeast: characterization of the 'strain' difference. Yeast 18, 489–497 (2001).

    Article  CAS  Google Scholar 

  10. Tanaka, M., Chien, P., Naber, N., Cooke, R. & Weissman, J.S. Conformational variations in an infectious protein determine prion strain differences. Nature 428, 323–328 (2004).

    Article  CAS  Google Scholar 

  11. Caughey, B. & Lansbury, P.T. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26, 267–298 (2003).

    Article  CAS  Google Scholar 

  12. Johnson, S.M. et al. Native state kinetic stabilization as a strategy to ameliorate protein misfolding diseases: a focus on the transthyretin amyloidoses. Acc. Chem. Res. 38, 911–921 (2005).

    Article  CAS  Google Scholar 

  13. Haass, C. & Selkoe, D.J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nat. Rev. Mol. Cell Biol. 8, 101–112 (2007).

    Article  CAS  Google Scholar 

  14. Balch, W.E., Morimoto, R.I., Dillin, A. & Kelly, J.W. Adapting proteostasis for disease intervention. Science 319, 916–919 (2009).

    Article  Google Scholar 

  15. Serio, T.R. et al. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289, 1317–1321 (2000).

    Article  CAS  Google Scholar 

  16. King, C.Y. & Diaz-Avalos, R. Protein-only transmission of three yeast prion strains. Nature 428, 319–323 (2004).

    Article  CAS  Google Scholar 

  17. Scheibel, T. & Lindquist, S.L. The role of conformational flexibility in prion propagation and maintenance for Sup35p. Nat. Struct. Biol. 11, 958–962 (2001).

    Article  Google Scholar 

  18. Collins, S.R., Douglass, A., Vale, R.D. & Weissman, J.S. Mechanism of prion propagation: amyloid growth occurs by monomer addition. PLoS Biol. 2, e321 (2004).

    Article  Google Scholar 

  19. Tanaka, M. et al. Expansion of polyglutamine induces the formation of quasi-aggregate in the early stage of protein fibrillization. J. Biol. Chem. 278, 34717–34724 (2003).

    Article  CAS  Google Scholar 

  20. Glatter, O. & Kratky, O. Small Angle X-ray Scattering (Academic Press, New York, 1982).

  21. Walsh, D.M. et al. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539 (2002).

    Article  CAS  Google Scholar 

  22. Kayed, R. et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486–489 (2003).

    Article  CAS  Google Scholar 

  23. Lee, S. & Eisenberg, D. Seeded conversion of recombinant prion protein to a disulfide-bonded oligomer by a reduction-oxidation process. Nat. Struct. Biol. 10, 725–730 (2003).

    Article  CAS  Google Scholar 

  24. Plakoutsi, G. et al. Evidence for a mechanism of amyloid formation involving molecular reorganisation within native-like precursor aggregates. J. Mol. Biol. 351, 910–922 (2005).

    Article  CAS  Google Scholar 

  25. Eakin, C.M., Berman, A.J. & Miranker, A.D. A native to amyloidogenic transition regulated by a backbone trigger. Nat. Struct. Mol. Biol. 13, 202–208 (2006).

    Article  CAS  Google Scholar 

  26. Jahn, T.R., Parker, M.J., Homans, S.W. & Radford, S.E. Amyloid formation under physiological conditions proceeds via a native-like folding intermediate. Nat. Struct. Mol. Biol. 13, 195–201 (2006).

    Article  CAS  Google Scholar 

  27. Toyama, B.H., Kelly, M.J., Gross, J.D. & Weissman, J.S. The structural basis of yeast prion strain variants. Nature 449, 233–237 (2007).

    Article  CAS  Google Scholar 

  28. Liu, J.J. & Lindquist, S. Oligopeptide-repeat expansions modulate 'protein-only' inheritance in yeast. Nature 400, 573–576 (1999).

    Article  CAS  Google Scholar 

  29. Krishnan, R. & Lindquist, S.L. Structural insights into a yeast prion illuminate nucleation and strain diversity. Nature 435, 765–772 (2005).

    Article  CAS  Google Scholar 

  30. Tessier, P.M. & Lindquist, S. Prion recognition elements govern nucleation, strain specificity and species barriers. Nature 447, 556–561 (2007).

    Article  CAS  Google Scholar 

  31. Glover, J.R. et al. Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell 89, 811–819 (1997).

    Article  CAS  Google Scholar 

  32. Tanaka, M., Chien, P., Yonekura, K. & Weissman, J.S. Mechanism of cross-species prion transmission: an infectious conformation compatible with two highly divergent yeast prion proteins. Cell 121, 49–62 (2005).

    Article  CAS  Google Scholar 

  33. Nelson, R. et al. Structure of the cross-β spine of amyloid-like fibrils. Nature 435, 773–778 (2005).

    Article  CAS  Google Scholar 

  34. Shewmaker, F., Wickner, R.B. & Tycko, R. Amyloid of the prion domain of Sup35p has an in-register parallel beta-sheet structure. Proc. Natl. Acad. Sci. USA 103, 19754–19759 (2006).

    Article  CAS  Google Scholar 

  35. Chen, S., Ferrone, F.A. & Wetzel, R. Huntington's disease age-of-onset linked to polyglutamine aggregation nucleation. Proc. Natl. Acad. Sci. USA 99, 11884–11889 (2002).

    Article  CAS  Google Scholar 

  36. Xue, W.F., Homans, S.W. & Radford, S.E. Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly. Proc. Natl. Acad. Sci. USA 105, 8926–8931 (2008).

    Article  CAS  Google Scholar 

  37. Shorter, J. & Lindquist, S. Hsp104 catalyzes formation and elimination of self-replicating Sup35 prion conformers. Science 304, 1793–1797 (2004).

    Article  CAS  Google Scholar 

  38. Inoue, Y., Taguchi, H., Kishimoto, A. & Yoshida, M. Hsp104 binds to yeast Sup35 prion fiber but needs other factor(s) to sever it. J. Biol. Chem. 279, 52319–52323 (2004).

    Article  CAS  Google Scholar 

  39. Tipton, K.A., Verges, K.J. & Weissman, J.S. In vivo monitoring of the prion replication cycle reveals a critical role for Sis1 in delivering substrates to Hsp104. Mol. Cell 32, 584–591 (2008).

    Article  CAS  Google Scholar 

  40. Tanaka, M., Collins, S.R., Toyama, B.H. & Weissman, J.S. The physical basis of how prion conformations determine strain phenotypes. Nature 442, 585–589 (2006).

    Article  CAS  Google Scholar 

  41. Duennwald, M.L., Jagadish, S., Muchowski, P.J. & Lindquist, S. Flanking sequences profoundly alter polyglutamine toxicity in yeast. Proc. Natl. Acad. Sci. USA 103, 11045–11050 (2006).

    Article  CAS  Google Scholar 

  42. Thakur, A.K. et al. Polyglutamine disruption of the huntingtin exon 1 N terminus triggers a complex aggregation mechanism. Nat. Struct. Mol. Biol. 16, 380–389 (2009).

    Article  CAS  Google Scholar 

  43. Fujisawa, T. et al. Small-angle X-ray scattering station at the SPring-8 RIKEN beamline. J. Appl. Cryst. 33, 797–800 (2000).

    Article  CAS  Google Scholar 

  44. Ameyama, Y. et al. Large-aperture TV detector with a beryllium-windowed image intensifier for x-ray diffraction. Rev. Sci. Instrum. 66, 2290–2294 (1995).

    Article  Google Scholar 

  45. Guinier, A. & Fournet, G. Small-Angle Scattering of X-rays (John Wiley & Sons, New York, 1955).

  46. Svergun, D.I., Semenyuk, A.V. & Feigin, L.A. Small-angle-scattering-data treatment by the regularization method. Acta Crystallogr. 44, 244–250 (1988).

    Article  Google Scholar 

  47. Lehrer, S.S. Intramolecular pyrene excimer fluorescence: a probe of proximity and protein conformational change. Methods Enzymol. 278, 286–295 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Sakamaki and T. Akagi for help with the EM experiments and S. Akiyama for discussion of the SAXS measurements. Y.O. is supported by a Japan Society for the Promotion of Science (JSPS) postdoctoral fellowship. Funding was provided by the JST-PRESTO, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), the Ministry of Health, Labour and Welfare (MHLW) and The Uehara Memorial Foundation (M.T.) and by the Howard Hughes Medical Institute and the US National Institutes of Health (J.S.W.).

Author information

Authors and Affiliations

Authors

Contributions

M.T. and Y.O. designed the experiments. Y.O. performed most experiments, K.I. contributed to setup of the SAXS experiments and B.H.T. helped the NMR experiments. B.H.T. and J.S.W. provided new reagents. Y.O., J.S.W. and M.T. analyzed and discussed the data and wrote the paper.

Corresponding author

Correspondence to Motomasa Tanaka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Figures 1–9 (PDF 1807 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohhashi, Y., Ito, K., Toyama, B. et al. Differences in prion strain conformations result from non-native interactions in a nucleus. Nat Chem Biol 6, 225–230 (2010). https://doi.org/10.1038/nchembio.306

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.306

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing