Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Domino access to highly substituted chromans and isochromans from carbohydrates

Abstract

Herein we describe the synthesis of highly substituted chromans and isochromans using carbohydrates as starting materials. Our approach makes use of a Pd-catalyzed domino reaction consisting of oxidative addition, followed by two carbopalladation steps and completed by a cyclization to annelate the benzene moiety. The versatility of this route has been demonstrated by a small library of highly substituted chromans and isochromans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ellis, G.P. & Lockhart, I.M. The Chemistry of Heterocyclic Compounds, Chromenes, Chromanones, and Chromones (Wiley-VCH, New York, 2007).

  2. Shen, H.C. Tetrahedron 65, 3931–3952 (2009).

    Article  CAS  Google Scholar 

  3. Nicolaou, K.C. et al. J. Am. Chem. Soc. 122, 9968–9976 (2000).

    Article  CAS  Google Scholar 

  4. Trost, B.M., Shen, H.C., Dong, L., Surivet, J.-P. & Sylvain, C. J. Am. Chem. Soc. 126, 11966–11983 (2004).

    Article  CAS  Google Scholar 

  5. van Lingen, H.L., Zhuang, W., Hansen, T., Rutjes, F.P.J.T. & Jørgensen, K.A Org. Biomol. Chem. 1, 1953–1958 (2003).

    Article  CAS  Google Scholar 

  6. Zu, L., Zhang, S., Xie, H. & Wang, W. Org. Lett. 11, 1627–1630 (2009).

    Article  CAS  Google Scholar 

  7. Hong, L., Wang, L., Sun, W., Wong, K. & Wang, R. J. Org. Chem. 74, 6881–6884 (2009).

    Article  CAS  Google Scholar 

  8. Shi, Y.-L. & Shi, M. Org. Biomol. Chem. 5, 1499–1504 (2007).

    Article  CAS  Google Scholar 

  9. Liu, K., Chougnet, A. & Woggon, W.-D. Angew. Chem. Int. Ed. 47, 5827–5829 (2008).

    Article  CAS  Google Scholar 

  10. Fukamizu, K., Miyake, Y. & Nishibayashi, Y. J. Am. Chem. Soc. 130, 10498–10499 (2008).

    Article  CAS  Google Scholar 

  11. Yamamoto, Y. & Itonaga, K. Org. Lett. 11, 717–720 (2009).

    Article  CAS  Google Scholar 

  12. Wegner, H.A., Ahles, S. & Neuburger, M. Chem. Eur. J. 14, 11310–11313 (2008).

    Article  CAS  Google Scholar 

  13. Hashmi, A.S.K. et al. Chem. Eur. J. 14, 6672–6678 (2008).

    Article  CAS  Google Scholar 

  14. Tietze, L.F., Burkhardt, O. & Henrich, M. Liebigs Ann./Recueil 887–891 (1997).

  15. Tietze, L.F., Brasche, G. & Gericke, K.M. Domino Reactions in Organic Synthesis (Wiley-VCH, Weinheim, Germany, 2006).

  16. Tietze, L.F. Chem. Rev. 96, 115–136 (1996).

    Article  CAS  Google Scholar 

  17. Enders, D., Huttl, M.R.M., Grondal, C. & Raabe, G. Nature 441, 861–863 (2006).

    Article  CAS  Google Scholar 

  18. Meng, X. et al. Org. Lett. 11, 991–994 (2009).

    Article  CAS  Google Scholar 

  19. Cui, S.-L., Wang, J. & Wang, Y.-G. J. Am. Chem. Soc. 130, 13526–13527 (2008).

    Article  CAS  Google Scholar 

  20. Meyer, F.E. & de Meijere, A. Synlett 777–778 (1991).

  21. Negishi, E., Harring, L.S., Owczarczyk, Z., Mohamud, M.M. & Ay, M. Tetrahedr. Lett. 33, 3253–3256 (1992).

    Article  CAS  Google Scholar 

  22. Blond, G., Bour, C., Salem, B. & Suffert, J. Org. Lett. 10, 1075–1078 (2008).

    Article  CAS  Google Scholar 

  23. Zhou, Y., Porco, J.A. Jr. & Snyder, J.K. Org. Lett. 9, 393–396 (2007).

    Article  CAS  Google Scholar 

  24. Tsuji, J., Watanabe, I., Minami, I. & Shimizu, I. J. Am. Chem. Soc. 107, 2196–2198 (1985).

    Article  CAS  Google Scholar 

  25. Ferrier, R.J., Overend, W.G. & Ryan, A.E. J. Chem. Soc. 3667–3670 (1962).

Download references

Acknowledgements

We are grateful to the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support (Emmy Noether Fellowship and Liebig Fellowship to D.B.W.). D.C.K. thanks the Studienstiftung des deutschen Volkes for his undergraduate fellowship and the Fonds der Chemischen Industrie for his PhD fellowship. S.C.S. acknowledges the Konrad-Adenauer-Stiftung for her undergraduate fellowship. We thank L.F. Tietze (University of Göttingen) for helpful discussions and generous support of our work.

Author information

Authors and Affiliations

Authors

Contributions

D.B.W. designed the project. M.L., D.C.K., M.P. and S.C.S. performed the experiments. The manuscript was written by D.B.W.

Corresponding author

Correspondence to Daniel B Werz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results (PDF 5360 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leibeling, M., Koester, D., Pawliczek, M. et al. Domino access to highly substituted chromans and isochromans from carbohydrates. Nat Chem Biol 6, 199–201 (2010). https://doi.org/10.1038/nchembio.302

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.302

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing