Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microscopic rotary mechanism of ion translocation in the Fo complex of ATP synthases

Abstract

The microscopic mechanism of coupled c-ring rotation and ion translocation in F1Fo-ATP synthases is unknown. Here we present conclusive evidence supporting the notion that the ability of c-rings to rotate within the Fo complex derives from the interplay between the ion-binding sites and their nonhomogenous microenvironment. This evidence rests on three atomic structures of the c15 rotor from crystals grown at low pH, soaked at high pH and, after N,N′-dicyclohexylcarbodiimide (DCCD) modification, resolved at 1.8, 3.0 and 2.2 Å, respectively. Alongside a quantitative DCCD-labeling assay and free-energy molecular dynamics calculations, these data demonstrate how the thermodynamic stability of the so-called proton-locked state is maximized by the lipid membrane. By contrast, a hydrophilic environment at the a-subunit–c-ring interface appears to unlock the binding-site conformation and promotes proton exchange with the surrounding solution. Rotation thus occurs as c-subunits stochastically alternate between these environments, directionally biased by the electrochemical transmembrane gradient.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Environmental control of the conformation and proton affinity of the c-subunit binding sites.
Figure 2: Crystal structures of the S. platensis c15 ring at low and high pH.
Figure 4: Simulation of the structural effect of an artifactual deprotonation of Glu62 in a lipid-membrane environment.
Figure 3: pH dependence of DCCD labeling of the S. platensis c15 ring.
Figure 5: Structure of the S. platensis c15 ring with the bound inhibitor DCCD at 2.2-Å resolution.
Figure 6: Microscopic model of proton translocation and coupled rotation in the Fo complex from S. platensis.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Mitchell, P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191, 144–148 (1961).

    Article  CAS  Google Scholar 

  2. Dimroth, P. Primary sodium ion translocating enzymes. Biochim. Biophys. Acta 1318, 11–51 (1997).

    Article  CAS  Google Scholar 

  3. Noji, H., Yasuda, R., Yoshida, M. & Kinosita, K., Jr. Direct observation of the rotation of F1-ATPase. Nature 386, 299–302 (1997).

    Article  CAS  Google Scholar 

  4. Abrahams, J.P., Leslie, A.G.W., Lutter, R. & Walker, J.E. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994).

    Article  CAS  Google Scholar 

  5. Boyer, P.D. The binding change mechanism for ATP synthase—some probabilities and possibilities. Biochim. Biophys. Acta 1140, 215–250 (1993).

    Article  CAS  Google Scholar 

  6. Forgac, M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat. Rev. Mol. Cell Biol. 8, 917–929 (2007).

    Article  CAS  Google Scholar 

  7. Stock, D., Leslie, A.G.W. & Walker, J.E. Molecular architecture of the rotary motor in ATP synthase. Science 286, 1700–1705 (1999).

    Article  CAS  Google Scholar 

  8. Pogoryelov, D. et al. The c15 ring of the Spirulina platensis F-ATP synthase: F1/F0 symmetry mismatch is not obligatory. EMBO Rep. 6, 1040–1044 (2005).

    Article  CAS  Google Scholar 

  9. Meier, T., Polzer, P., Diederichs, K., Welte, W. & Dimroth, P. Structure of the rotor ring of F-Type Na+-ATPase from Ilyobacter tartaricus. Science 308, 659–662 (2005).

    Article  CAS  Google Scholar 

  10. Meier, T. et al. Complete ion-coordination structure in the rotor ring of Na+-dependent F-ATP synthases. J. Mol. Biol. 391, 498–507 (2009).

    Article  CAS  Google Scholar 

  11. Murata, T., Yamato, I., Kakinuma, Y., Leslie, A.G. & Walker, J.E. Structure of the rotor of the V-Type Na+-ATPase from Enterococcus hirae. Science 308, 654–659 (2005).

    Article  CAS  Google Scholar 

  12. Pogoryelov, D., Yildiz, Ö., Faraldo-Gómez, J.D. & Meier, T. High-resolution structure of the rotor ring of a proton-dependent ATP synthase. Nat. Struct. Mol. Biol. 16, 1068–1073 (2009).

    Article  CAS  Google Scholar 

  13. Preiss, L., Yildiz, Ö., Hicks, D.B., Krulwich, T.A. & Meier, T. A new type of proton coordination in an F1Fo-ATP synthase rotor ring. PLoS Biol. 8, e1000443 (2010).

    Article  Google Scholar 

  14. Vik, S.B. & Antonio, B.J. A mechanism of proton translocation by F1F0 ATP synthases suggested by double mutants of the a subunit. J. Biol. Chem. 269, 30364–30369 (1994).

    CAS  PubMed  Google Scholar 

  15. Junge, W., Lill, H. & Engelbrecht, S. ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Biochem. Sci. 22, 420–423 (1997).

    Article  CAS  Google Scholar 

  16. Steed, P.R. & Fillingame, R.H. Aqueous accessibility to the transmembrane regions of subunit c of the Escherichia coli F1F0 ATP synthase. J. Biol. Chem. 284, 23243–23250 (2009).

    Article  CAS  Google Scholar 

  17. Lau, W.C. & Rubinstein, J.L. Structure of intact Thermus thermophilus V-ATPase by cryo-EM reveals organization of the membrane-bound VO motor. Proc. Natl. Acad. Sci. USA 107, 1367–1372 (2010).

    Article  CAS  Google Scholar 

  18. Krah, A., Pogoryelov, D., Meier, T. & Faraldo-Gómez, J.D. On the structure of the proton-binding site in the Fo rotor of chloroplast ATP synthases. J. Mol. Biol. 395, 20–27 (2010).

    Article  CAS  Google Scholar 

  19. Krah, A. et al. Structural and energetic basis for H+ versus Na+ binding selectivity in ATP synthase Fo rotors. Biochim. Biophys. Acta 1797, 763–772 (2010).

    Article  CAS  Google Scholar 

  20. Kluge, C. & Dimroth, P. Kinetics of inactivation of the F1Fo ATPase of Propionigenium modestum by dicyclohexylcarbodiimide in relationship to H+ and Na+ concentration: probing the binding site for the coupling ions. Biochemistry 32, 10378–10386 (1993).

    Article  CAS  Google Scholar 

  21. Lightowlers, R.N., Howitt, S.M., Hatch, L., Gibson, F. & Cox, G.B. The proton pore in the Escherichia coli F0F1-ATPase: a requirement for arginine at position 210 of the a-subunit. Biochim. Biophys. Acta 894, 399–406 (1987).

    Article  CAS  Google Scholar 

  22. Erez, E., Fass, D. & Bibi, E. How intramembrane proteases bury hydrolytic reactions in the membrane. Nature 459, 371–378 (2009).

    Article  CAS  Google Scholar 

  23. Krepkiy, D. et al. Structure and hydration of membranes embedded with voltage-sensing domains. Nature 462, 473–479 (2009).

    Article  CAS  Google Scholar 

  24. Krishnamurthy, H., Piscitelli, C.L. & Gouaux, E. Unlocking the molecular secrets of sodium-coupled transporters. Nature 459, 347–355 (2009).

    Article  CAS  Google Scholar 

  25. Neale, E.J., Rong, H., Cockcroft, C.J. & Sivaprasadarao, A. Mapping the membrane-aqueous border for the voltage-sensing domain of a potassium channel. J. Biol. Chem. 282, 37597–37604 (2007).

    Article  CAS  Google Scholar 

  26. Rosenbaum, D.M., Rasmussen, S.G. & Kobilka, B.K. The structure and function of G-protein-coupled receptors. Nature 459, 356–363 (2009).

    Article  CAS  Google Scholar 

  27. Sitkoff, D., Sharp, K.A. & Honig, B. Correlating solvation free energies and surface tensions of hydrocarbon solutes. Biophys. Chem. 51, 397–403, discussion 404–409 (1994).

    Article  CAS  Google Scholar 

  28. Gonen, T. et al. Lipid-protein interactions in double-layered two-dimensional AQP0 crystals. Nature 438, 633–638 (2005).

    Article  CAS  Google Scholar 

  29. Long, S.B., Tao, X., Campbell, E.B. & MacKinnon, R. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450, 376–382 (2007).

    Article  CAS  Google Scholar 

  30. Pogoryelov, D. et al. Probing the rotor subunit interface of the ATP synthase from Ilyobacter tartaricus. FEBS J. 275, 4850–4862 (2008).

    Article  CAS  Google Scholar 

  31. Gibbons, C., Montgomery, M.G., Leslie, A.G. & Walker, J.E. The structure of the central stalk in bovine F1-ATPase at 2.4 Å resolution. Nat. Struct. Biol. 7, 1055–1061 (2000).

    Article  CAS  Google Scholar 

  32. Meier, T., Matthey, U., Henzen, F., Dimroth, P. & Müller, D.J. The central plug in the reconstituted undecameric c cylinder of a bacterial ATP synthase consists of phospholipids. FEBS Lett. 505, 353–356 (2001).

    Article  CAS  Google Scholar 

  33. Pogoryelov, D. et al. Sodium dependency of the photosynthetic electron transport in the alkaliphilic cyanobacterium Arthrospira platensis. J. Bioenerg. Biomembr. 35, 427–437 (2003).

    Article  CAS  Google Scholar 

  34. Sebald, W., Machleidt, W. & Wachter, E.N. N′-dicyclohexylcarbodiimide binds specifically to a single glutamyl residue of the proteolipid subunit of the mitochondrial adenosinetriphosphatases from Neurospora crassa and Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 77, 785–789 (1980).

    Article  CAS  Google Scholar 

  35. Kluge, C. & Dimroth, P. Specific protection by Na+ or Li+ of the F1F0-ATPase of Propionigenium modestum from the reaction with dicyclohexylcarbodiimide. J. Biol. Chem. 268, 14557–14560 (1993).

    CAS  PubMed  Google Scholar 

  36. Meier, T. et al. Evidence for structural integrity in the undecameric c-rings isolated from sodium ATP synthases. J. Mol. Biol. 325, 389–397 (2003).

    Article  CAS  Google Scholar 

  37. Valiyaveetil, F., Hermolin, J. & Fillingame, R.H. pH dependent inactivation of solubilized F1F0 ATP synthase by dicyclohexylcarbodiimide: pKa of detergent unmasked aspartyl-61 in Escherichia coli subunit c. Biochim. Biophys. Acta 1553, 296–301 (2002).

    Article  CAS  Google Scholar 

  38. Viard, M., Gallay, J., Vincent, M. & Paternostre, M. Origin of laurdan sensitivity to the vesicle-to-micelle transition of phospholipid-octylglucoside system: a time-resolved fluorescence study. Biophys. J. 80, 347–359 (2001).

    Article  CAS  Google Scholar 

  39. Bond, P.J. & Sansom, M.S. Membrane protein dynamics versus environment: simulations of OmpA in a micelle and in a bilayer. J. Mol. Biol. 329, 1035–1053 (2003).

    Article  CAS  Google Scholar 

  40. Bond, P.J., Faraldo-Gòmez, J.D., Deol, S.S. & Sansom, M.S. Membrane protein dynamics and detergent interactions within a crystal: a simulation study of OmpA. Proc. Natl. Acad. Sci. USA 103, 9518–9523 (2006).

    Article  CAS  Google Scholar 

  41. von Ballmoos, C. & Dimroth, P. Two distinct proton binding sites in the ATP synthase family. Biochemistry 46, 11800–11809 (2007).

    Article  CAS  Google Scholar 

  42. Assadi-Porter, F.M. & Fillingame, R.H. Proton-translocating carboxyl of subunit c of F1Fo H+-ATP synthase: the unique environment suggested by the pKa determined by 1H NMR. Biochemistry 34, 16186–16193 (1995).

    Article  CAS  Google Scholar 

  43. Moore, K.J., Angevine, C.M., Vincent, O.D., Schwem, B.E. & Fillingame, R.H. The cytoplasmic loops of subunit a of Escherichia coli ATP synthase may participate in the proton translocating mechanism. J. Biol. Chem. 283, 13044–13052 (2008).

    Article  CAS  Google Scholar 

  44. Dimroth, P., von Ballmoos, C. & Meier, T. Catalytic and mechanical cycles in F-ATP synthases. Fourth in the cycles review series. EMBO Rep. 7, 276–282 (2006).

    Article  CAS  Google Scholar 

  45. Rastogi, V.K. & Girvin, M.E. Structural changes linked to proton translocation by subunit c of the ATP synthase. Nature 402, 263–268 (1999).

    Article  CAS  Google Scholar 

  46. Aksimentiev, A., Balabin, I.A., Fillingame, R.H. & Schulten, K. Insights into the molecular mechanism of rotation in the Fo sector of ATP synthase. Biophys. J. 86, 1332–1344 (2004).

    Article  CAS  Google Scholar 

  47. Vorburger, T. et al. Arginine-induced conformational change in the c-ring/a-subunit interface of ATP synthase. FEBS J. 275, 2137–2150 (2008).

    Article  CAS  Google Scholar 

  48. Nakanishi-Matsui, M. et al. Stochastic high-speed rotation of Escherichia coli ATP synthase F1 sector: the ϵ subunit-sensitive rotation. J. Biol. Chem. 281, 4126–4131 (2006).

    Article  CAS  Google Scholar 

  49. Wiedenmann, A., Dimroth, P. & von Ballmoos, C. Functional asymmetry of the F0 motor in bacterial ATP synthases. Mol. Microbiol. 72, 479–490 (2009).

    Article  CAS  Google Scholar 

  50. Mitome, N. et al. Essential arginine residue of the Fo-a subunit in FoF1-ATP synthase has a role to prevent the proton shortcut without c-ring rotation in the Fo proton channel. Biochem. J. 430, 171–177 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the staff of the Swiss Light Source (PXII) and the European Synchrotron Radiation Facility (ID23-1 and ID23-2) for their assistance at the beamlines. We also thank R.H. Fillingame (University of Wisconsin) for providing unpublished data and discussions on water accessibility of the a-c interface, K.M. Pos for helpful discussions on DCCD labeling and H. Michel for his comments on this work. T.M., Ö.Y. and D.P. wish to express their gratitude to W. Kühlbrandt for his exceptional scientific support. This work was funded in part by the Cluster of Excellence “Macromolecular Complexes” (DFG Project EXC 115) (to J.D.F.-G. and T.M.), the DFG Collaborative Research Center (S.F.B.) 807 (to T.M.) and a EUROCORES project (EuroSYNBIO) of the European Science Foundation (to T.M). Experimental and computational resources were provided in part by the EU ESFRI INSTRUCT program, the BMBF Membrane Protein Core Center and the Jülich Supercomputing Centre.

Author information

Authors and Affiliations

Authors

Contributions

D.P. conceived, designed and performed most of the experiments, analyzed the data and wrote parts of the manuscript. A.K. and J.D.F.-G. performed computer simulations and analyzed the data. J.D.L. performed the mass spectrometry experiments and MS data analysis. Ö.Y. helped to collect and analyze crystallographic data and contributed analysis tools. J.D.F.-G. and T.M. directed the project, conceived, designed and performed experiments, analyzed the data and wrote the paper.

Corresponding authors

Correspondence to José D Faraldo-Gómez or Thomas Meier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Figure 1 and Supplementary Tables 1 and 2 (PDF 111 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pogoryelov, D., Krah, A., Langer, J. et al. Microscopic rotary mechanism of ion translocation in the Fo complex of ATP synthases. Nat Chem Biol 6, 891–899 (2010). https://doi.org/10.1038/nchembio.457

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.457

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing