Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The kinetic parameters and energy cost of the Hsp70 chaperone as a polypeptide unfoldase

Abstract

Hsp70-Hsp40-NEF and possibly Hsp100 are the only known molecular chaperones that can use the energy of ATP to convert stably pre-aggregated polypeptides into natively refolded proteins. However, the kinetic parameters and ATP costs have remained elusive because refolding reactions have only been successful with a molar excess of chaperones over their polypeptide substrates. Here we describe a stable, misfolded luciferase species that can be efficiently renatured by substoichiometric amounts of bacterial Hsp70-Hsp40-NEF. The reactivation rates increased with substrate concentration and followed saturation kinetics, thus allowing the determination of apparent Vmax′ and Km′ values for a chaperone-mediated renaturation reaction for the first time. Under the in vitro conditions used, one Hsp70 molecule consumed five ATPs to effectively unfold a single misfolded protein into an intermediate that, upon chaperone dissociation, spontaneously refolded to the native state, a process with an ATP cost a thousand times lower than expected for protein degradation and resynthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The inactive luciferase species needs to be extensively unfolded by urea or processed by chaperones to convert into the native species.
Figure 2: DnaK-DnaJ-GrpE acts as an ATP-fuelled unfoldase.
Figure 3: Unfolding and refolding of luciferase as a function of the DnaK concentration.
Figure 4: DnaK-DnaJ-GrpE–assisted refolding and ATP consumption with increasing substrate concentration.
Figure 5: Native refolding is spontaneous.
Figure 6: Scheme of the ATP-fueled polypeptide unfoldase cycle by the DnaK-DnaJ-GrpE chaperone.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Anfinsen, C.B. Principles that govern folding of protein chains. Science 181, 223–230 (1973).

    Article  CAS  Google Scholar 

  2. Dobson, C.M. Protein folding and misfolding. Nature 426, 884–890 (2003).

    Article  CAS  Google Scholar 

  3. Parsell, D.A., Kowal, A.S., Singer, M.A. & Lindquist, S. Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372, 475–478 (1994).

    Article  CAS  Google Scholar 

  4. Wiech, H., Buchner, J., Zimmermann, R. & Jakob, U. Hsp90 chaperones protein folding in vitro. Nature 358, 169–170 (1992).

    Article  CAS  Google Scholar 

  5. Schröder, H., Langer, T., Hartl, F.U. & Bukau, B. DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J. 12, 4137–4144 (1993).

    Article  Google Scholar 

  6. Cheng, M.Y. et al. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 337, 620–625 (1989).

    Article  CAS  Google Scholar 

  7. Goloubinoff, P., Christeller, J.T., Gatenby, A.A. & Lorimer, G.H. Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and Mg-ATP. Nature 342, 884–889 (1989).

    Article  CAS  Google Scholar 

  8. Jakob, U., Gaestel, M., Engel, K. & Buchner, J. Small heat shock proteins are molecular chaperones. J. Biol. Chem. 268, 1517–1520 (1993).

    CAS  PubMed  Google Scholar 

  9. Fenton, W.A., Kashi, Y., Furtak, K. & Horwich, A.L. Residues in chaperonin GroEL required for polypeptide binding and release. Nature 371, 614–619 (1994).

    Article  CAS  Google Scholar 

  10. Rüdiger, S., Germeroth, L., Schneider-Mergener, J. & Bukau, B. Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J. 16, 1501–1507 (1997).

    Article  Google Scholar 

  11. Rüdiger, S., Schneider-Mergener, J. & Bukau, B. Its substrate specificity characterizes the DnaJ co-chaperone as a scanning factor for the DnaK chaperone. EMBO J. 20, 1042–1050 (2001).

    Article  Google Scholar 

  12. Hartl, F.U. & Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858 (2002).

    Article  CAS  Google Scholar 

  13. Hinault, M.P., Ben-Zvi, A. & Goloubinoff, P. Chaperones and proteases:cellular fold-controlling factors of proteins in neurodegenerative diseases and aging. J. Mol. Neurosci. 30, 249–265 (2006).

    Article  CAS  Google Scholar 

  14. Azem, A., Diamant, S., Kessel, M., Weiss, C. & Goloubinoff, P. The protein—folding activity of chaperonins correlates with the symmetric GroEL14(GroES7)2 heterooligomer. Proc. Natl. Acad. Sci. USA 92, 12021–12025 (1995).

    Article  CAS  Google Scholar 

  15. Diamant, S., Azem, A., Weiss, C. & Goloubinoff, P. Effect of free and ATP-bound magnesium and manganese ions on the ATPase activity of chaperonin GroEL14. Biochemistry 34, 273–277 (1995).

    Article  CAS  Google Scholar 

  16. Martin, J. et al. Chaperonin-mediated protein folding at the surface of groEL through a 'molten globule'-like intermediate. Nature 352, 36–42 (1991).

    Article  CAS  Google Scholar 

  17. Ben-Zvi, A., De los Rios, P., Dietler, G. & Goloubinoff, P. Active solubilization and refolding of stable protein aggregates by cooperative unfolding action of individual Hsp70 chaperones. J. Biol. Chem. 279, 37298–37303 (2004).

    Article  CAS  Google Scholar 

  18. Diamant, S., Ben-Zvi, A.P., Bukau, B. & Goloubinoff, P. Size-dependent disaggregation of stable protein aggregates by the DnaK chaperone machinery. J. Biol. Chem. 275, 21107–21113 (2000).

    Article  CAS  Google Scholar 

  19. Diamant, S. & Goloubinoff, P. Temperature-controlled activity of DnaK-DnaJ-GrpE chaperones: Protein-folding arrest and recovery during and after heat shock depends on the substrate protein and the GrpE concentration. Biochemistry 37, 9688–9694 (1998).

    Article  CAS  Google Scholar 

  20. Skowyra, D., Georgopoulos, C. & Zylicz, M. The E. coli dnaK gene product, the Hsp70 homolog, can reactivate heat-inactivated RNA polymerase in an ATP hydrolysis-dependent manner. Cell 62, 939–944 (1990).

    Article  CAS  Google Scholar 

  21. Veinger, L., Diamant, S., Buchner, J. & Goloubinoff, P. The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J. Biol. Chem. 273, 11032–11037 (1998).

    Article  CAS  Google Scholar 

  22. Schuermann, J.P. et al. Structure of the Hsp110: Hsc70 nucleotide exchange machine. Mol. Cell 31, 232–243 (2008).

    Article  CAS  Google Scholar 

  23. Glover, J.R. & Lindquist, S. Hsp104, Hsp70, and Hsp40: A novel chaperone system that rescues previously aggregated proteins. Cell 94, 73–82 (1998).

    Article  CAS  Google Scholar 

  24. Goloubinoff, P., Mogk, A., Ben Zvi, A.P., Tomoyasu, T. & Bukau, B. Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc. Natl. Acad. Sci. USA 96, 13732–13737 (1999).

    Article  CAS  Google Scholar 

  25. Szabo, A. et al. The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE. Proc. Natl. Acad. Sci. USA 91, 10345–10349 (1994).

    Article  CAS  Google Scholar 

  26. Diamant, S., Azem, A., Weiss, C. & Goloubinoff, P. Increased efficiency of GroE-assisted protein-folding by manganese ions. J. Biol. Chem. 270, 28387–28391 (1995).

    Article  CAS  Google Scholar 

  27. Sharma, S.K., Christen, P. & Goloubinoff, P. Disaggregating chaperones: An unfolding story. Curr. Protein Pept. Sci. 10, 432–446 (2009).

    Article  CAS  Google Scholar 

  28. De Los Rios, P., Ben-Zvi, A., Slutsky, O., Azem, A. & Goloubinoff, P. Hsp70 chaperones accelerate protein translocation and the unfolding of stable protein aggregates by entropic pulling. Proc. Natl. Acad. Sci. USA 103, 6166–6171 (2006).

    Article  CAS  Google Scholar 

  29. Svetlov, M.S., Kolb, V.A. & Spirin, A.S. Folding of the firefly luciferase polypeptide chain with the immobilized C terminus. Mol. Biol. 41, 86–92 (2007).

    Article  CAS  Google Scholar 

  30. Conti, E., Franks, N.P. & Brick, P. Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes. Structure 4, 287–298 (1996).

    Article  CAS  Google Scholar 

  31. Fishbein, W.N. & Winkert, J.W. in Proteins at Low Temperatures, Vol. 180 (ed. Fennema, O.) 55–82 (American Chemical Society, 1979).

  32. Barouch, W., Prasad, K., Greene, L. & Eisenberg, E. Auxilin-induced interaction of the molecular chaperone Hsc70 with clathrin baskets. Biochemistry 36, 4303–4308 (1997).

    Article  CAS  Google Scholar 

  33. Han, W. & Christen, P. Mechanism of the targeting action of DnaJ in the DnaK molecular chaperone system. J. Biol. Chem. 278, 19038–19043 (2003).

    Article  CAS  Google Scholar 

  34. Laufen, T. et al. Mechanism of regulation of Hsp70 chaperones by DnaJ cochaperones. Proc. Natl. Acad. Sci. USA 96, 5452–5457 (1999).

    Article  CAS  Google Scholar 

  35. Brehmer, D., Gassler, C., Rist, W., Mayer, M.P. & Bukau, B. Influence of GrpE on DnaK-substrate interactions. J. Biol. Chem. 279, 27957–27964 (2004).

    Article  CAS  Google Scholar 

  36. Mally, A. & Witt, S.N. GrpE accelerates peptide binding and release from the high affinity state of DnaK. Nat. Struct. Biol. 8, 254–257 (2001).

    Article  CAS  Google Scholar 

  37. Hu, B., Mayer, M.P. & Tomita, M. Modeling Hsp70-mediated protein folding. Biophys. J. 91, 496–507 (2006).

    Article  CAS  Google Scholar 

  38. Mayer, M.P. et al. Multistep mechanism of substrate binding determines chaperone activity of Hsp70. Nat. Struct. Biol. 7, 586–593 (2000).

    Article  CAS  Google Scholar 

  39. Popp, S. et al. Structural dynamics of the DnaK-peptide complex. J. Mol. Biol. 347, 1039–1052 (2005).

    Article  CAS  Google Scholar 

  40. Bertelsen, E.B., Chang, L., Gestwicki, J.E. & Zuiderweg, E.R. Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proc. Natl. Acad. Sci. USA 106, 8471–8476 (2009).

    Article  CAS  Google Scholar 

  41. Goloubinoff, P. & De Los Rios, P. The mechanism of Hsp70 chaperones: (entropic) pulling the models together. Trends Biochem. Sci. 32, 372–380 (2007).

    Article  CAS  Google Scholar 

  42. Gamer, J., Bujard, H. & Bukau, B. Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor sigma 32. Cell 69, 833–842 (1992).

    Article  CAS  Google Scholar 

  43. Rodriguez, F. et al. Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones. Mol. Cell 32, 347–358 (2008).

    Article  CAS  Google Scholar 

  44. Muchowski, P.J. & Wacker, J.L. Modulation of neurodegeneration by molecular chaperones. Nat. Rev. Neurosci. 6, 11–22 (2005).

    Article  CAS  Google Scholar 

  45. Feifel, B., Sandmeier, E., Schonfeld, H.J. & Christen, P. Potassium ions and the molecular-chaperone activity of DnaK. Eur. J. Biochem. 237, 318–321 (1996).

    Article  CAS  Google Scholar 

  46. Hellebust, H., Uhlen, M. & Enfors, S.O. Interaction between heat-shock protein Dnak and recombinant staphylococcal protein-A. J. Bacteriol. 172, 5030–5034 (1990).

    Article  CAS  Google Scholar 

  47. Schönfeld, H.J., Schmidt, D., Schroder, H. & Bukau, B. The Dnak chaperone system of Escherichia coli—quaternary structures and interactions of the Dnak and Grpe components. J. Biol. Chem. 270, 2183–2189 (1995).

    Article  Google Scholar 

  48. Bischofberger, P., Han, W.J., Feifel, B., Schonfeld, H.J. & Christen, P. D-Peptides as inhibitors of the DnaK/DnaJ/GrpE chaperone system. J. Biol. Chem. 278, 19044–19047 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A.S. Spirin (Institute of Protein Research, Russian Academy of Sciences) for the luciferase plasmid, H.J. Schönfeld (F. Hoffmann-La Roche) for DnaK, DnaJ and GrpE, A. Azem (Tel Aviv University) for discussions and AUC analyses, M. Muriset and R.U.H. Mattoo for discussions and technical assistance, G. Lorimer and J. Buchner for suggesting, respectively, the experiments in Figures 5b and 2b, and A. Finka and S. Priya for discussions and manuscript correction. This research was financed by grant 3100A0-109290 from the Swiss National Science Foundation and in part by the Zwahlen Grant from the Faculty of Biology and Medicine, University of Lausanne.

Author information

Authors and Affiliations

Authors

Contributions

S.K.S. designed and executed the experiments; P.D.L.R. designed some experiments; P.C. designed and analyzed some experiments. A.L. performed the analytical ultracentrifugation; P.G. directed the project, designed the experiments, analyzed the data and wrote the paper with P.D.L.R. and P.C. All authors contributed to the final text.

Corresponding author

Correspondence to Pierre Goloubinoff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1–3 (PDF 590 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, S., De Los Rios, P., Christen, P. et al. The kinetic parameters and energy cost of the Hsp70 chaperone as a polypeptide unfoldase. Nat Chem Biol 6, 914–920 (2010). https://doi.org/10.1038/nchembio.455

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.455

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing