Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of physiological heterogeneity in microbial population behavior

Abstract

As the ability to analyze individual cells in microbial populations expands, it is becoming apparent that isogenic microbial populations contain substantial cell-to-cell differences in physiological parameters such as growth rate, resistance to stress and regulatory circuit output. Subpopulations exist that are manyfold different in these parameters from the population average, and these differences arise by stochastic processes. Such differences can dramatically affect the response of cells to perturbations, especially stress, which in turn dictates overall population response. Defining the role of cell-to-cell heterogeneity in population behavior is important for understanding population-based research problems, including those involving infecting populations, normal flora and bacterial populations in water and soils. Emerging technological breakthroughs are poised to transform single-cell analysis and are critical for the next phase of insights into physiological heterogeneity in the near future. These include technologies for multiparameter analysis of live cells, with downstream processing and analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 'On'/'off' switch mechanisms (bimodal states) using pigment as an example.
Figure 2: Subpopulation responding to a perturbation.
Figure 3: Single molecule detection by single-molecule fluorescence microscopy.
Figure 4: Single molecule detection by single-molecule force microscopy.
Figure 5: Glass microwell–based single-cell analysis chip.
Figure 6: The future of single-cell analysis.

Similar content being viewed by others

References

  1. Maloney, P.C. & Rotman, B. Distribution of suboptimally induced β-D-galactosidase in Escherichia coli. The enzyme content of individual cells. J. Mol. Biol. 73, 77–91 (1973).

    Article  CAS  Google Scholar 

  2. Siegele, D.A. & Hu, J.C. Gene expression from plasmids containing the araBAD promoter at subsaturating inducer concentrations represents mixed populations. Proc. Natl. Acad. Sci. USA 94, 8168–8172 (1997).

    Article  CAS  Google Scholar 

  3. Megerle, J.A., Fritz, G., Gerland, U., Jung, K. & Rädler, J.O. Timing and dynamics of single cell gene expression in the arabinose utilization system. Biophys. J. 95, 2103–2115 (2008).

    Article  CAS  Google Scholar 

  4. Ghim, C.M. & Almaas, E. Genetic noise control via protein oligomerization. BMC Syst. Biol. 2, 94 (2008).

    Article  Google Scholar 

  5. Chastanet, A. et al. Broadly heterogeneous activation of the master regulator for sporulation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 107, 8486–8491 (2010).

    Article  CAS  Google Scholar 

  6. Chai, Y., Norman, T., Kolter, R. & Losick, R. An epigenetic switch governing daughter cell separation in Bacillus subtilis. Genes Dev. 24, 754–765 (2010).

    Article  CAS  Google Scholar 

  7. López, D., Vlamakis, H., Losick, R. & Kolter, R. Cannibalism enhances biofilm development in Bacillus subtilis. Mol. Microbiol. 74, 609–618 (2009).

    Article  Google Scholar 

  8. Tan, C., Marguet, P. & You, L. Emergent bistability by a growth-modulating positive feedback circuit. Nat. Chem. Biol. 5, 842–848 (2009).

    Article  CAS  Google Scholar 

  9. Kaern, M., Elston, T.C., Blake, W.J. & Collins, J.J. Stochasticity in gene expression: from theories to phenotypes. Nat. Rev. Genet. 6, 451–464 (2005).

    Article  CAS  Google Scholar 

  10. Booth, I.R. Stress and the single cell: intrapopulation diversity is a mechanism to ensure survival upon exposure to stress. Int. J. Food Microbiol. 78, 19–30 (2002).

    Article  Google Scholar 

  11. Thattai, M. & van Oudenaarden, A. Stochastic gene expression in fluctuating environments. Genetics 167, 523–530 (2004).

    Article  Google Scholar 

  12. Aertsen, A. & Michiels, C.W. Diversify or die: generation of diversity in response to stress. Crit. Rev. Microbiol. 31, 69–78 (2005).

    Article  Google Scholar 

  13. Locke, J.C. & Elowitz, M.B. Using movies to analyse gene circuit dynamics in single cells. Nat. Rev. Microbiol. 7, 383–392 (2009).

    Article  CAS  Google Scholar 

  14. Longo, D. & Hasty, J. Dynamics of single-cell gene expression. Mol. Syst. Biol. 2, 64 (2006).

    Article  Google Scholar 

  15. Balaban, N.Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial persistence as a phenotypic switch. Science 305, 1622–1625 (2004).

    Article  CAS  Google Scholar 

  16. Helaine, S. et al. Dynamics of intracellular bacterial replication at the single cell level. Proc. Natl. Acad. Sci. USA 107, 3746–3751 (2010).

    Article  CAS  Google Scholar 

  17. Fraser, H.B., Hirsh, A.E., Giaever, G., Kumm, J. & Eisen, M.B. Noise minimization in eukaryotic gene expression. PLoS Biol. 2, e137 (2004).

    Article  Google Scholar 

  18. Rosenfeld, N., Young, J.W., Alon, U., Swain, P.S. & Elowitz, M.B. Gene regulation at the single-cell level. Science 307, 1962–1965 (2005).

    Article  CAS  Google Scholar 

  19. Pedraza, J.M. & van Oudenaarden, A. Noise propagation in gene networks. Science 307, 1965–1969 (2005).

    Article  CAS  Google Scholar 

  20. Colman-Lerner, A. et al. Regulated cell-to-cell variation in a cell-fate decision system. Nature 437, 699–706 (2005). Shows that growth rate variation in yeast is heritable and correlated with variation in gene expression.

    Article  CAS  Google Scholar 

  21. Losick, R. & Desplan, C. Stochasticity and cell fate. Science 320, 65–68 (2008).

    Article  CAS  Google Scholar 

  22. Zeng, Y., Novak, R., Shuga, J., Smith, M.T. & Mathies, R.A. High-performance single cell genetic analysis using microfluidic emulsion generator arrays. Anal. Chem. 82, 3183–3190 (2010).

    Article  CAS  Google Scholar 

  23. Le, T.T. et al. Real-time RNA profiling within a single bacterium. Proc. Natl. Acad. Sci. USA 102, 9160–9164 (2005).

    Article  CAS  Google Scholar 

  24. Golding, I., Paulsson, J., Zawilski, S.M. & Cox, E.C. Real-time kinetics of gene activity in individual bacteria. Cell 123, 1025–1036 (2005).

    Article  CAS  Google Scholar 

  25. Becskei, A., Kaufmann, B.B. & van Oudenaarden, A. Contributions of low molecule number and chromosomal positioning to stochastic gene expression. Nat. Genet. 37, 937–944 (2005).

    Article  CAS  Google Scholar 

  26. Kuang, Y., Biran, I. & Walt, D.R. Simultaneously monitoring gene expression kinetics and genetic noise in single cells by optical well arrays. Anal. Chem. 76, 6282–6286 (2004).

    Article  CAS  Google Scholar 

  27. Newman, J.R. et al. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441, 840–846 (2006).

    Article  CAS  Google Scholar 

  28. Anetzberger, C., Pirch, T. & Jung, K. Heterogeneity in quorum sensing-regulated bioluminescence of Vibrio harveyi. Mol. Microbiol. 73, 267–277 (2009).

    Article  CAS  Google Scholar 

  29. Arriaga, E.A. Determining biological noise via single cell analysis. Anal. Bioanal. Chem. 393, 73–80 (2009).

    Article  CAS  Google Scholar 

  30. Cai, L., Friedman, N. & Xie, X.S. Stochastic protein expression in individual cells at the single molecule level. Nature 440, 358–362 (2006).

    Article  CAS  Google Scholar 

  31. Choi, P.J., Cai, L., Frieda, K. & Xie, X.S. A stochastic single-molecule event triggers phenotype switching of a bacterial cell. Science 322, 442–446 (2008).

    Article  CAS  Google Scholar 

  32. Rajala, T., Häkkinen, A., Healy, S., Yli-Harja, O. & Ribeiro, A.S. Effects of transcriptional pausing on gene expression dynamics. PLoS Comput. Biol. 6, e1000704 (2010).

    Article  Google Scholar 

  33. Kussell, E., Kishony, R., Balaban, N.Q. & Leibler, S. Bacterial persistence: a model of survival in changing environments. Genetics 169, 1807–1814 (2005).

    Article  Google Scholar 

  34. Kussell, E. & Leibler, S. Phenotypic diversity, population growth, and information in fluctuating environments. Science 309, 2075–2078 (2005). Proposes that phenotypic (physiological) diversity within populations would be a selective advantage in fluctuating environments, with bacterial persistence as an example.

    Article  CAS  Google Scholar 

  35. Murphy, K.F., Balázsi, G. & Collins, J.J. Combinatorial promoter design for engineering noisy gene expression. Proc. Natl. Acad. Sci. USA 104, 12726–12731 (2007).

    Article  CAS  Google Scholar 

  36. Freed, N.E. et al. A simple screen to identify promoters conferring high levels of phenotypic noise. PLoS Genet. 4, e1000307 (2008).

    Article  Google Scholar 

  37. Kelly, C.D. & Rahn, O. The growth rate of individual bacterial cells. J. Bacteriol. 23, 147–153 (1932).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Umehara, S., Wakamoto, Y., Inoue, I. & Yasuda, K. On-chip single-cell microcultivation assay for monitoring environmental effects on isolated cells. Biochem. Biophys. Res. Commun. 305, 534–540 (2003).

    Article  CAS  Google Scholar 

  39. Pin, C. & Baranyi, J. Single-cell and population lag times as a function of cell age. Appl. Environ. Microbiol. 74, 2534–2536 (2008).

    Article  CAS  Google Scholar 

  40. Strovas, T.J., Sauter, L.M., Guo, X. & Lidstrom, M.E. Cell-to-cell heterogeneity in growth rate and gene expression in Methylobacterium extorquens AM1. J. Bacteriol. 189, 7127–7133 (2007). Uses a flow-through system to follow individual cells through a shift in substrates, demonstrating that growth rate and gene expression are not correlated.

    Article  CAS  Google Scholar 

  41. Strovas, T.J. & Lidstrom, M.E. Population heterogeneity in Methylobacterium extorquens AM1. Microbiology 155, 2040–2048 (2009).

    Article  CAS  Google Scholar 

  42. Wang, P. et al. Robust growth of Escherichia coli. Curr. Biol. 20, 1099–1103 (2010).

    Article  CAS  Google Scholar 

  43. Wegrzyn, A., Czyz, A., Gabig, M. & Wegrzyn, G. ClpP/ClpX-mediated degradation of the bacteriophage lambda O protein and regulation of lambda phage and lambda plasmid replication. Arch. Microbiol. 174, 89–96 (2000).

    Article  CAS  Google Scholar 

  44. Ingham, C.J., Beerthuyzen, M. & van Hylckama Vlieg, J. Population heterogeneity of Lactobacillus plantarum WCFS1 microcolonies in response to and recovery from acid stress. Appl. Environ. Microbiol. 74, 7750–7758 (2008).

    Article  CAS  Google Scholar 

  45. den Besten, H.M. et al. Quantitative analysis of population heterogeneity of the adaptive salt stress response and growth capacity of Bacillus cereus ATCC 14579. Appl. Environ. Microbiol. 73, 4797–4804 (2007).

    Article  CAS  Google Scholar 

  46. Keren, I., Shah, D., Spoering, A., Kaldalu, N. & Lewis, K. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J. Bacteriol. 186, 8172–8180 (2004).

    Article  CAS  Google Scholar 

  47. Liu, P. & Mathies, R.A. Integrated microfluidic systems for high-performance genetic analysis. Trends Biotechnol. 27, 572–581 (2009).

    Article  CAS  Google Scholar 

  48. Muzzey, D. & van Oudenaarden, A. Quantitative time-lapse fluorescence microscopy in single cells. Annu. Rev. Cell Dev. Biol. 25, 301–327 (2009).

    Article  CAS  Google Scholar 

  49. Wagner, M. Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. Annu. Rev. Microbiol. 63, 411–429 (2009).

    Article  CAS  Google Scholar 

  50. Amantonico, A., Urban, P.L. & Zenobi, R. Analytical techniques for single-cell metabolomics: state of the art and trends. Anal. Bioanal. Chem. published online, doi:10.1007/s00216–010–3850–1 (11 July 2010).

  51. Lindström, S. & Andersson-Svahn, H. Miniaturization of biological assays—overview on microwell devices for single-cell analyses. Biochim. Biophys. Acta published online, doi:10.1016/j.bbagen.2010.04.009 (6 May 2010).

  52. Zare, R.N. & Kim, S. Microfluidic platforms for single-cell analysis. Annu. Rev. Biomed. Eng. 12, 187–201 (2010).

    Article  CAS  Google Scholar 

  53. Huang, W.E., Li, M., Jarvis, R.M., Goodacre, R. & Banwart, S.A. Shining light on the microbial world the application of Raman microspectroscopy. Adv. Appl. Microbiol. 70, 153–186 (2010).

    Article  CAS  Google Scholar 

  54. Ishii, S., Tago, K. & Senoo, K. Single-cell analysis and isolation for microbiology and biotechnology: methods and applications. Appl. Microbiol. Biotechnol. 86, 1281–1292 (2010).

    Article  CAS  Google Scholar 

  55. Shen, F., Du, W., Kreutz, J.E., Fok, A. & Ismagilov, R.F. Digital PCR on a SlipChip. Lab Chip published online, doi:10.1039/c004521g (1 July 2010).

  56. Shen, F. et al. Nanoliter multiplex PCR arrays on a SlipChip. Anal. Chem. 82, 4606–4612 (2010).

    Article  CAS  Google Scholar 

  57. Vincent, M.E., Liu, W., Haney, E.B. & Ismagilov, R.F. Microfluidic stochastic confinement enhances analysis of rare cells by isolating cells and creating high density environments for control of diffusible signals. Chem. Soc. Rev. 39, 974–984 (2010).

    Article  CAS  Google Scholar 

  58. Dragavon, J. et al. A cellular isolation system for real-time single-cell oxygen consumption monitoring. J. R. Soc. Interface 5 Suppl 2: S151–S159 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sako, Y. Imaging single molecules in living cells for systems biology. Mol. Syst. Biol. 2, 56 (2006).

    Article  Google Scholar 

  60. Müller, D.J., Helenius, J., Alsteens, D. & Dufrene, Y.F. Force probing surfaces of living cells to molecular resolution. Nat. Chem. Biol. 5, 383–390 (2009).

    Article  Google Scholar 

  61. Yu, J., Xiao, J., Ren, X., Lao, K. & Xie, X.S. Probing gene expression in live cells, one protein molecule at a time. Science 311, 1600–1603 (2006).

    Article  CAS  Google Scholar 

  62. Elf, J., Li, G.W. & Xie, X.S. Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316, 1191–1194 (2007).

    Article  CAS  Google Scholar 

  63. Frunzke, J., Bramkamp, M., Schweitzer, J.E. & Bott, M. Population heterogeneity in Corynebacterium glutamicum ATCC 13032 caused by prophage CGP3. J. Bacteriol. 190, 5111–5119 (2008).

    Article  CAS  Google Scholar 

  64. Niu, L. & Yu, J. Investigating intracellular dynamics of FtsZ cytoskeleton with photoactivation single-molecule tracking. Biophys. J. 95, 2009–2016 (2008).

    Article  CAS  Google Scholar 

  65. Maamar, H., Raj, A. & Dubnau, D. Noise in gene expression determines cell fate in Bacillus subtilis. Science 317, 526 (2007).

    Article  CAS  Google Scholar 

  66. Taniguchi, Y. et al. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329, 533–538 (2010).

    Article  CAS  Google Scholar 

  67. Francius, G. et al. Detection, localization, and conformational analysis of single polysaccharide molecules on live bacteria. ACS Nano 2, 1921–1929 (2008).

    Article  CAS  Google Scholar 

  68. Camesano, T.A. & Abu-Lail, N.I. Heterogeneity in bacterial surface polysaccharides, probed on a single-molecule basis. Biomacromolecules 3, 661–667 (2002).

    Article  CAS  Google Scholar 

  69. Fritz, J., Katopodis, A.G., Kolbinger, F. & Anselmetti, D. Force-mediated kinetics of single P-selectin/ligand complexes observed by atomic force microscopy. Proc. Natl. Acad. Sci. USA 95, 12283–12288 (1998).

    Article  CAS  Google Scholar 

  70. Shi, Q., Chien, Y.H. & Leckband, D. Biophysical properties of cadherin bonds do not predict cell sorting. J. Biol. Chem. 283, 28454–28463 (2008).

    Article  CAS  Google Scholar 

  71. Kedrov, A., Janovjak, H., Sapra, K.T. & Muller, D.J. Deciphering molecular interactions of native membrane proteins by single-molecule force spectroscopy. Annu. Rev. Biophys. Biomol. Struct. 36, 233–260 (2007).

    Article  CAS  Google Scholar 

  72. Molter, T.W. et al. A microwell array device capable of measuring single-cell oxygen consumption rates. Sens. Actuators B Chem. 135, 678–686 (2009).

    Article  CAS  Google Scholar 

  73. Kalyuzhnaya, M.G., Lidstrom, M.E. & Chistoserdova, L. Real-time detection of actively metabolizing microbes by redox sensing as applied to methylotroph populations in Lake Washington. ISME J. 2, 696–706 (2008).

    Article  CAS  Google Scholar 

  74. Chao, T.C. & Ros, A. Microfluidic single-cell analysis of intracellular compounds. J. R. Soc. Interface 5 Suppl 2: S139–S150 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kim, H.J., Boedicker, J.Q., Choi, J.W. & Ismagilov, R.F. Defined spatial structure stabilizes a synthetic multispecies bacterial community. Proc. Natl. Acad. Sci. USA 105, 18188–18193 (2008).

    Article  CAS  Google Scholar 

  76. Liu, W., Kim, H.J., Lucchetta, E.M., Du, W. & Ismagilov, R.F. Isolation, incubation, and parallel functional testing and identification by FISH of rare microbial single-copy cells from multi-species mixtures using the combination of chemistrode and stochastic confinement. Lab Chip 9, 2153–2162 (2009). Uses water droplets generated in oil via microfluidics to isolate single cells, analyze them, allow growth and then split the cultures for downstream analyses.

    Article  CAS  Google Scholar 

  77. Wang, D. & Bodovitz, S. Single cell analysis: the new frontier in 'omics'. Trends Biotechnol. 28, 281–290 (2010).

    Article  CAS  Google Scholar 

  78. Masujima, T. Live single-cell mass spectrometry. Anal. Sci. 25, 953–960 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work described in this review was supported by a grant from the Department of Energy, Biological and Environmental Research (ER64485).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary E Lidstrom.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lidstrom, M., Konopka, M. The role of physiological heterogeneity in microbial population behavior. Nat Chem Biol 6, 705–712 (2010). https://doi.org/10.1038/nchembio.436

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.436

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology