Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Follow the leader: the use of leader peptides to guide natural product biosynthesis

Abstract

The avalanche of genomic information in the past decade has revealed that natural product biosynthesis using the ribosomal machinery is much more widespread than originally anticipated. Nearly all of these compounds are crafted through post-translational modifications of a larger precursor peptide that often contains the marching orders for the biosynthetic enzymes. We review here the available information for how the peptide sequences in the precursors govern the post-translational tailoring processes for several classes of natural products. In addition, we highlight the great potential these leader peptide–directed biosynthetic systems offer for engineering conformationally restrained and pharmacophore-rich products with structural diversity that greatly expands the proteinogenic repertoire.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General scheme and examples of leader peptide–directed biosynthesis.
Figure 2: Post-translational modifications in lantibiotics.
Figure 3: Post-translational modifications in microcin and cytolysin biosynthesis.
Figure 4: Proposed biosynthesis of patellamides C and A.
Figure 5: Biosynthesis of thiostrepton.
Figure 6: Post-translational modifications in conopeptides.

Similar content being viewed by others

Elizabeth L. Bell, William Finnigan, … Sabine L. Flitsch

References

  1. Bode, H.B. & Muller, R. The impact of bacterial genomics on natural product research. Angew. Chem. Int. Edn Engl. 44, 6828–6846 (2005).

    Article  CAS  Google Scholar 

  2. Schmidt, E.W. et al. Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc. Natl. Acad. Sci. USA 102, 7315–7320 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. McClerren, A.L. et al. Discovery and in vitro biosynthesis of haloduracin, a new two-component lantibiotic. Proc. Natl. Acad. Sci. USA 103, 17243–17248 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lawton, E.M., Cotter, P.D., Hill, C. & Ross, R.P. Identification of a novel two-peptide lantibiotic, Haloduracin, produced by the alkaliphile Bacillus halodurans C-125. FEMS Microbiol. Lett. 267, 64–71 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Hallen, H.E., Luo, H., Scott-Craig, J.S. & Walton, J.D. Gene family encoding the major toxins of lethal Amanita mushrooms. Proc. Natl. Acad. Sci. USA 104, 19097–19101 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee, S.W. et al. Discovery of a widely distributed toxin biosynthetic gene cluster. Proc. Natl. Acad. Sci. USA 105, 5879–5884 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cotter, P.D. et al. Listeriolysin S, a novel peptide haemolysin associated with a subset of lineage I Listeria monocytogenes. PLoS Pathog. 4, e1000144 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Ziemert, N., Ishida, K., Liaimer, A., Hertweck, C. & Dittmann, E. Ribosomal synthesis of tricyclic depsipeptides in bloom-forming cyanobacteria. Angew. Chem. Int. Edn Engl. 47, 7756–7759 (2008).

    Article  CAS  Google Scholar 

  9. Philmus, B., Christiansen, G., Yoshida, W.Y. & Hemscheidt, T.K. Post-translational modification in microviridin biosynthesis. ChemBioChem 9, 3066–3073 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Wieland Brown, L.C., Acker, M.G., Clardy, J., Walsh, C.T. & Fischbach, M.A. Thirteen posttranslational modifications convert a 14-residue peptide into the antibiotic thiocillin. Proc. Natl. Acad. Sci. USA 106, 2549–2553 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kelly, W.L., Pan, L. & Li, C. Thiostrepton biosynthesis: prototype for a new family of bacteriocins. J. Am. Chem. Soc. 131, 4327–4334 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Liao, R. et al. Thiopeptide biosynthesis featuring ribosomally synthesized precursor peptides and conserved posttranslational modifications. Chem. Biol. 16, 141–147 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Morris, R.P. et al. Ribosomally synthesized thiopeptide antibiotics targeting elongation factor Tu. J. Am. Chem. Soc. 131, 5946–5955 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. McIntosh, J.A., Donia, M.S. & Schmidt, E.W. Ribosomal peptide natural products: bridging the ribosomal and nonribosomal worlds. Nat. Prod. Rep. 26, 537–559 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Braun, P. & Tommassen, J. Function of bacterial propeptides. Trends Microbiol. 6, 6–8 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Willey, J.M. & van der Donk, W.A. Lantibiotics: peptides of diverse structure and function. Annu. Rev. Microbiol. 61, 477–501 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Lubelski, J., Rink, R., Khusainov, R., Moll, G.N. & Kuipers, O.P. Biosynthesis, immunity, regulation, mode of action and engineering of the model lantibiotic nisin. Cell. Mol. Life Sci. 65, 455–476 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. van den Hooven, H.W., Rollema, H.S., Siezen, R.J., Hilbers, C.W. & Kuipers, O.P. Structural features of the final intermediate in the biosynthesis of the lantibiotic nisin. Influence of the leader peptide. Biochemistry 36, 14137–14145 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Beck-Sickinger, A.G. & Jung, G. Synthesis and conformational analysis of lantibiotic leader-, pro- and pre-peptides. in Nisin and Novel Lantibiotics (eds. Jung, G. & Sahl, H.-G.) 218–230 (ESCOM, Leiden, The Netherlands, 1991).

    Google Scholar 

  20. van der Meer, J.R. et al. Influence of amino acid substitutions in the nisin leader peptide on biosynthesis and secretion of nisin by Lactococcus lactis. J. Biol. Chem. 269, 3555–3562 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Li, B. et al. Structure and mechanism of the lantibiotic cyclase involved in nisin biosynthesis. Science 311, 1464–1467 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Izaguirre, G. & Hansen, J.N. Use of alkaline phosphatase as a reporter polypeptide to study the role of the subtilin leader segment and the SpaT transporter in the posttranslational modifications and secretion of subtilin in Bacillus subtilis 168. Appl. Environ. Microbiol. 63, 3965–3971 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kuipers, A. et al. NisT, the transporter of the lantibiotic nisin, can transport fully modified, dehydrated and unmodified prenisin and fusions of the leader peptide with non-lantibiotic peptides. J. Biol. Chem. 279, 22176–22182 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Rink, R. et al. Production of dehydroamino acid-containing peptides by Lactococcus lactis. Appl. Environ. Microbiol. 73, 1792–1796 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kluskens, L.D. et al. Post-translational modification of therapeutic peptides by NisB, the dehydratase of the lantibiotic nisin. Biochemistry 44, 12827–12834 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Håvarstein, L.S., Holo, H. & Nes, I.F. The leader peptide of colicin V shares consensus sequences with leader peptides that are common among peptide bacteriocins produced by gram-positive bacteria. Microbiology 140, 2383–2389 (1994).

    Article  PubMed  Google Scholar 

  27. Xie, L. et al. Lacticin 481: in vitro reconstitution of lantibiotic synthetase activity. Science 303, 679–681 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Levengood, M.R., Patton, G.C. & van der Donk, W.A. The leader peptide is not required for post-translational modification by lacticin 481 synthetase. J. Am. Chem. Soc. 129, 10314–10315 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Patton, G.C., Paul, M., Cooper, L.E., Chatterjee, C. & van der Donk, W.A. The importance of the leader sequence for directing lanthionine formation in lacticin 481. Biochemistry 47, 7342–7351 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Lee, M.V. et al. Distributive and directional behavior of lantibiotic synthetases revealed by high-resolution tandem mass spectrometry. J. Am. Chem. Soc. 131, 12258–12264 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen, P., Qi, F.X., Novak, J., Krull, R.E. & Caufield, P.W. Effect of amino acid substitutions in conserved residues in the leader peptide on biosynthesis of the lantibiotic mutacin II. FEMS Microbiol. Lett. 195, 139–144 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Furgerson Ihnken, L.A., Chatterjee, C. & van der Donk, W.A. In vitro reconstitution and substrate specificity of a lantibiotic protease. Biochemistry 47, 7352–7363 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Sprules, T., Kawulka, K.E., Gibbs, A.C., Wishart, D.S. & Vederas, J.C. NMR solution structure of the precursor for carnobacteriocin B2, an antimicrobial peptide from Carnobacterium piscicola. Eur. J. Biochem. 271, 1748–1756 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Duquesne, S., Destoumieux-Garzon, D., Peduzzi, J. & Rebuffat, S. Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat. Prod. Rep. 24, 708–734 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Bayer, A., Freund, S. & Jung, G. Posttranslational backbone modifications in the ribosomal biosynthesis of the glycine-rich antibiotic microcin B17. Angew. Chem. Int. Edn Engl. 32, 1336–1339 (1993).

    Article  Google Scholar 

  36. Wilson, K.A. et al. Structure of microcin J25, a peptide inhibitor of bacterial RNA polymerase, is a lassoed tail. J. Am. Chem. Soc. 125, 12475–12483 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Bayro, M.J. et al. Structure of antibacterial peptide microcin J25: a 21-residue lariat protoknot. J. Am. Chem. Soc. 125, 12382–12383 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Rosengren, K.J. et al. Microcin J25 has a threaded sidechain-to-backbone ring structure and not a head-to-tail cyclized backbone. J. Am. Chem. Soc. 125, 12464–12474 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Thomas, X. et al. Siderophore peptide, a new type of post-translationally modified antibacterial peptide with potent activity. J. Biol. Chem. 279, 28233–28242 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Guijarro, J.I. et al. Chemical structure and translation inhibition studies of the antibiotic microcin C7. J. Biol. Chem. 270, 23520–23532 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Nolan, E.M., Fischbach, M.A., Koglin, A. & Walsh, C.T. Biosynthetic tailoring of microcin E492m: post-translational modification affords an antibacterial siderophore-peptide conjugate. J. Am. Chem. Soc. 129, 14336–14347 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, Y.M., Milne, J.C., Madison, L.L., Kolter, R. & Walsh, C.T. From peptide precursors to oxazole and thiazole-containing peptide antibiotics: microcin B17 synthase. Science 274, 1188–1193 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Madison, L.L., Vivas, E.I., Li, Y.M., Walsh, C.T. & Kolter, R. The leader peptide is essential for the post-translational modification of the DNA-gyrase inhibitor microcin B17. Mol. Microbiol. 23, 161–168 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Yorgey, P., Davagnino, J. & Kolter, R. The maturation pathway of microcin B17, a peptide inhibitor of DNA gyrase. Mol. Microbiol. 9, 897–905 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Roy, R.S., Kim, S., Baleja, J.D. & Walsh, C.T. Role of the microcin B17 propeptide in substrate recognition: solution structure and mutational analysis of McbA1–26. Chem. Biol. 5, 217–228 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Milne, J.C. et al. Cofactor requirements and reconstitution of microcin B17 synthetase: a multienzyme complex that catalyzes the formation of oxazoles and thiazoles in the antibiotic microcin B17. Biochemistry 38, 4768–4781 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Sinha Roy, R., Belshaw, P.J. & Walsh, C.T. Mutational analysis of posttranslational heterocycle biosynthesis in the gyrase inhibitor microcin B17: distance dependence from propeptide and tolerance for substitution in a GSCG cyclizable sequence. Biochemistry 37, 4125–4136 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Kelleher, N.L., Hendrickson, C.L. & Walsh, C.T. Posttranslational heterocyclization of cysteine and serine residues in the antibiotic microcin B17: distributivity and directionality. Biochemistry 38, 15623–15630 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Duquesne, S. et al. Two enzymes catalyze the maturation of a lasso peptide in Escherichia coli. Chem. Biol. 14, 793–803 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Tsai, C.J., Ma, B. & Nussinov, R. Intra-molecular chaperone: the role of the N-terminal in conformational selection and kinetic control. Phys. Biol. 6, 13001 (2009).

    Article  CAS  Google Scholar 

  51. Nizet, V. et al. Genetic locus for streptolysin S production by group A streptococcus. Infect. Immun. 68, 4245–4254 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mitchell, D.A. et al. Structural and functional dissection of the heterocyclic peptide cytotoxin streptolysin S. J. Biol. Chem. 284, 13004–13012 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Onaka, H., Nakaho, M., Hayashi, K., Igarashi, Y. & Furumai, T. Cloning and characterization of the goadsporin biosynthetic gene cluster from Streptomyces sp. TP-A0584. Microbiology 151, 3923–3933 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Long, P.F., Dunlap, W.C., Battershill, C.N. & Jaspars, M. Shotgun cloning and heterologous expression of the patellamide gene cluster as a strategy to achieving sustained metabolite production. ChemBioChem 6, 1760–1765 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Ziemert, N. et al. Microcyclamide biosynthesis in two strains of Microcystis aeruginosa: from structure to genes and vice versa. Appl. Environ. Microbiol. 74, 1791–1797 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Donia, M.S., Ravel, J. & Schmidt, E.W. A global assembly line for cyanobactins. Nat. Chem. Biol. 4, 341–343 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Donia, M.S. et al. Natural combinatorial peptide libraries in cyanobacterial symbionts of marine ascidians. Nat. Chem. Biol. 2, 729–735 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Lee, J., McIntosh, J., Hathaway, B.J. & Schmidt, E.W. Using marine natural products to discover a protease that catalyzes peptide macrocyclization of diverse substrates. J. Am. Chem. Soc. 131, 2122–2124 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Luo, H., Hallen-Adams, H.E. & Walton, J.D. Processing of the phalloidin proprotein by prolyl oligopeptidase from the mushroom Conocybe albipes. J. Biol. Chem. 284, 18070–18077 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gruber, C.W. et al. Distribution and evolution of circular miniproteins in flowering plants. Plant Cell 20, 2471–2483 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jennings, C., West, J., Waine, C., Craik, D. & Anderson, M. Biosynthesis and insecticidal properties of plant cyclotides: the cyclic knotted proteins from Oldenlandia affinis. Proc. Natl. Acad. Sci. USA 98, 10614–10619 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dutton, J.L. et al. Conserved structural and sequence elements implicated in the processing of gene-encoded circular proteins. J. Biol. Chem. 279, 46858–46867 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Saska, I. et al. An asparaginyl endopeptidase mediates in vivo protein backbone cyclization. J. Biol. Chem. 282, 29721–29728 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Bagley, M.C., Dale, J.W., Merritt, E.A. & Xiong, X. Thiopeptide antibiotics. Chem. Rev. 105, 685–714 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Yu, Y. et al. Nosiheptide biosynthesis featuring a unique indole side ring formation on the characteristic thiopeptide framework. ACS Chem. Biol. 4, 855–864 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Philmus, B., Guerrette, J.P. & Hemscheidt, T.K. Substrate specificity and scope of MvdD, a GRASP-like ligase from the microviridin biosynthetic gene cluster. ACS Chem. Biol. 4, 429–434 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Buczek, O., Bulaj, G. & Olivera, B.M. Conotoxins and the posttranslational modification of secreted gene products. Cell. Mol. Life Sci. 62, 3067–3079 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Halai, R. & Craik, D.J. Conotoxins: natural product drug leads. Nat. Prod. Rep. 26, 526–536 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Woodward, S.R., Cruz, L.J., Olivera, B.M. & Hillyard, D.R. Constant and hypervariable regions in conotoxin propeptides. EMBO J. 9, 1015–1020 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Craig, A.G., Pradip, B. & Baldomero, M.O. Post-translationally modified neuropeptides from Conus venoms. Eur. J. Biochem. 264, 271–275 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Brown, M.A. et al. Precursors of novel Gla-containing conotoxins contain a carboxy-terminal recognition site that directs gamma-carboxylation. Biochemistry 44, 9150–9159 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Olivera, B.M. et al. Speciation of cone snails and interspecific hyperdivergence of their venom peptides. Potential evolutionary significance of introns. Ann. NY Acad. Sci. 870, 223–237 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. McIntosh, J.M., Olivera, B.M., Cruz, L.J. & Gray, W.R. Gamma-carboxyglutamate in a neuroactive toxin. J. Biol. Chem. 259, 14343–14346 (1984).

    Article  CAS  PubMed  Google Scholar 

  74. Bulaj, G. Formation of disulfide bonds in proteins and peptides. Biotechnol. Adv. 23, 87–92 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Bandyopadhyay, P.K. et al. Conantokin-G precursor and its role in gamma-carboxylation by a vitamin K-dependent carboxylase from a Conus snail. J. Biol. Chem. 273, 5447–5450 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Czerwiec, E. et al. Novel gamma-carboxyglutamic acid-containing peptides from the venom of Conus textile. FEBS J. 273, 2779–2788 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Bulaj, G. et al. Efficient oxidative folding of conotoxins and the radiation of venomous cone snails. Proc. Natl. Acad. Sci. USA 100, 14562–14568 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Buczek, O., Olivera, B.M. & Bulaj, G. Propeptide does not act as an intramolecular chaperone but facilitates protein disulfide isomerase-assisted folding of a conotoxin precursor. Biochemistry 43, 1093–1101 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Milne, T.J., Abbenante, G., Tyndall, J.D.A., Halliday, J. & Lewis, R.J. Isolation and characterization of a cone snail protease with homology to CRISP proteins of the pathogenesis-related protein superfamily. J. Biol. Chem. 278, 31105–31110 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Craig, A.G. et al. A novel post-translational modification involving bromination of tryptophan. Identification of the residues, L-6-bromotryptophan, in peptides from Conus imperialis and Conus radiatus venom. J. Biol. Chem. 272, 4689–4698 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Pisarewicz, K., Mora, D., Pflueger, F.C., Fields, G.B. & Mari, F. Polypeptide chains containing D-gamma-hydroxyvaline. J. Am. Chem. Soc. 127, 6207–6215 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Lopez-Vera, E., Walewska, A., Skalicky, J.J., Olivera, B.M. & Bulaj, G. Role of hydroxyprolines in the in vitro oxidative folding and biological activity of conotoxins. Biochemistry 47, 1741–1751 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Maqueda, M. et al. Genetic features of circular bacteriocins produced by Gram-positive bacteria. FEMS Microbiol. Rev. 32, 2–22 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Kawulka, K. et al. Structure of subtilosin A, an antimicrobial peptide from Bacillus subtilis with unusual posttranslational modifications linking cysteine sulfurs to a-carbons of phenylalanine and threonine. J. Am. Chem. Soc. 125, 4726–4727 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Zheng, G., Yan, L.Z., Vederas, J.C. & Zuber, P. Genes of the sbo-alb locus of Bacillus subtilis are required for production of the antilisterial bacteriocin subtilosin. J. Bacteriol. 181, 7346–7355 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Molle, V. et al. The Spo0A regulon of Bacillus subtilis. Mol. Microbiol. 50, 1683–1701 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Okada, M. et al. Structure of the Bacillus subtilis quorum-sensing peptide pheromone ComX. Nat. Chem. Biol. 1, 23–24 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Zhang, L., Lin, J. & Ji, G. Membrane anchoring of the AgrD N-terminal amphipathic region is required for its processing to produce a quorum-sensing pheromone in Staphylococcus aureus. J. Biol. Chem. 279, 19448–19456 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Thoendel, M. & Horswill, A.R. Identification of Staphylococcus aureus AgrD residues required for autoinducing peptide biosynthesis. J. Biol. Chem. 284, 21828–21838 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kuipers, O.P. et al. Protein engineering of lantibiotics. Antonie Van Leeuwenhoek 69, 161–169 (1996).

    Article  CAS  PubMed  Google Scholar 

  91. Chatterjee, C., Paul, M., Xie, L. & van der Donk, W.A. Biosynthesis and mode of action of lantibiotics. Chem. Rev. 105, 633–684 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Cortés, J., Appleyard, A.N. & Dawson, M.J. Whole-cell generation of lantibiotic variants. Methods Enzymol. 458, 559–574 (2009).

    Article  PubMed  CAS  Google Scholar 

  93. Cotter, P.D. et al. Complete alanine scanning of the two-component lantibiotic lacticin 3147: generating a blueprint for rational drug design. Mol. Microbiol. 62, 735–747 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Appleyard, A.N. et al. Dissecting structural and functional diversity of the lantibiotic mersacidin. Chem. Biol. 16, 490–498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Liu, W. & Hansen, J.N. Enhancement of the chemical and antimicrobial properties of subtilin by site-directed mutagenesis. J. Biol. Chem. 267, 25078–25085 (1992).

    Article  CAS  PubMed  Google Scholar 

  96. Field, D., Connor, P.M., Cotter, P.D., Hill, C. & Ross, R.P. The generation of nisin variants with enhanced activity against specific gram-positive pathogens. Mol. Microbiol. 69, 218–230 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Rollema, H.S., Kuipers, O.P., Both, P., de Vos, W.M. & Siezen, R.J. Improvement of solubility and stability of the antimicrobial peptide nisin by protein engineering. Appl. Environ. Microbiol. 61, 2873–2878 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Levengood, M.R., Knerr, P.J., Oman, T.J. & van der Donk, W.A. In vitro mutasynthesis of lantibiotic analogues containing nonproteinogenic amino acids. J. Am. Chem. Soc. 131, 12024–12025 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chatterjee, C., Patton, G.C., Cooper, L., Paul, M. & van der Donk, W.A. Engineering dehydro amino acids and thioethers into peptides using lacticin 481 synthetase. Chem. Biol. 13, 1109–1117 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Rink, R. et al. NisC, the cyclase of the lantibiotic nisin, can catalyze cyclization of designed nonlantibiotic peptides. Biochemistry 46, 13179–13189 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Levengood, M.R. & van der Donk, W.A. Use of lantibiotic synthetases for the preparation of bioactive constrained peptides. Bioorg. Med. Chem. Lett. 18, 3025–3028 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sinha Roy, R., Kelleher, N.L., Milne, J.C. & Walsh, C.T. In vivo processing and antibiotic activity of microcin B17 analogs with varying ring content and altered bisheterocyclic sites. Chem. Biol. 6, 305–318 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Zamble, D.B. et al. In vitro characterization of DNA gyrase inhibition by microcin B17 analogs with altered bisheterocyclic sites. Proc. Natl. Acad. Sci. USA 98, 7712–7717 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pavlova, O., Mukhopadhyay, J., Sineva, E., Ebright, R.H. & Severinov, K. Systematic structure-activity analysis of microcin J25. J. Biol. Chem. 283, 25589–25595 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lubelski, J., Khusainov, R. & Kuipers, O.P. Directionality and coordination of dehydration and ring formation during biosynthesis of the lantibiotic nisin. J. Biol. Chem. 284, 25962–25972 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Crooks, G.E., Hon, G., Chandonia, J.M. & Brenner, S.E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Our work on LDB has been supported by the US National Institutes of Health (GM58822). We thank D. Mitchell (University of Illinois at Urbana-Champaign) for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfred A van der Donk.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 (PDF 2209 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oman, T., van der Donk, W. Follow the leader: the use of leader peptides to guide natural product biosynthesis. Nat Chem Biol 6, 9–18 (2010). https://doi.org/10.1038/nchembio.286

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.286

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing