Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Redox-sensitive cysteines bridge p300/CBP-mediated acetylation and FoxO4 activity

Abstract

Cellular damage invoked by reactive oxygen species plays a key role in the pathobiology of cancer and aging. Forkhead box class O (FoxO) transcription factors are involved in various cellular processes including cell cycle regulation, apoptosis and resistance to reactive oxygen species, and studies in animal models have shown that these transcription factors are of vital importance in tumor suppression, stem cell maintenance and lifespan extension. Here we report that the activity of FoxO in human cells is directly regulated by the cellular redox state through a unique mechanism in signal transduction. We show that reactive oxygen species induce the formation of cysteine-thiol disulfide–dependent complexes of FoxO and the p300/CBP acetyltransferase, and that modulation of FoxO biological activity by p300/CBP-mediated acetylation is fully dependent on the formation of this redox-dependent complex. These findings directly link cellular redox status to the activity of the longevity protein FoxO.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Peroxide-induced lysine acetylation is dependent on cysteine residues in FoxO4.
Figure 2: FoxO4 and p300 form a peroxide-induced, disulfide-mediated heterodimer.
Figure 3: Hydrogen peroxide induces the redox-dependent FoxO4-p300 complex in a concentration-dependent manner.
Figure 4: Thioredoxin activity determines the duration of the stress-induced FoxO4-p300 interaction.
Figure 5: p300 represses FoxO4 transcriptional activity and FoxO4-induced cell cycle arrest in a redox-dependent manner.
Figure 6: p300 enhances FoxO4-induced cell death in a redox-dependent manner.

Similar content being viewed by others

References

  1. Davies, K.J. Protein damage and degradation by oxygen radicals. I. General aspects. J. Biol. Chem. 262, 9895–9901 (1987).

    CAS  PubMed  Google Scholar 

  2. Barnham, K.J., Masters, C.L. & Bush, A.I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 3, 205–214 (2004).

    CAS  PubMed  Google Scholar 

  3. Hussain, S.P., Hofseth, L.J. & Harris, C.C. Radical causes of cancer. Nat. Rev. Cancer 3, 276–285 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Balaban, R.S., Nemoto, S. & Finkel, T. Mitochondria, oxidants, and aging. Cell 120, 483–495 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Accili, D. & Arden, K.C. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117, 421–426 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Greer, E.L. & Brunet, A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24, 7410–7425 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Paik, J.H. et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128, 309–323 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128, 325–339 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Hwangbo, D.S., Gershman, B., Tu, M.P., Palmer, M. & Tatar, M. Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 429, 562–566 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R.A. C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, Y. & Chen, F. Reactive oxygen species (ROS), troublemakers between nuclear factor-kappaB (NF-kappaB) and c-Jun NH(2)-terminal kinase (JNK). Cancer Res. 64, 1902–1905 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. D'Autréaux, B. & Toledano, M.B. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8, 813–824 (2007).

    Article  PubMed  Google Scholar 

  13. Brennan, J.P. et al. Detection and mapping of widespread intermolecular protein disulfide formation during cardiac oxidative stress using proteomics with diagonal electrophoresis. J. Biol. Chem. 279, 41352–41360 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Lee, S.R. et al. Reversible inactivation of the tumor suppressor PTEN by H2O2. J. Biol. Chem. 277, 20336–20342 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Bossis, G. & Melchior, F. Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Mol. Cell 21, 349–357 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Nadeau, P.J., Charette, S.J., Toledano, M.B. & Landry, J. Disulfide Bond-mediated multimerization of Ask1 and its reduction by thioredoxin-1 regulate H(2)O(2)-induced c-Jun NH(2)-terminal kinase activation and apoptosis. Mol. Biol. Cell 18, 3903–3913 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Burgoyne, J.R. et al. Cysteine redox sensor in PKGIa enables oxidant-induced activation. Science 317, 1393–1397 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Brunet, A. et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011–2015 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Essers, M.A. et al. FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J. 23, 4802–4812 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nemoto, S. & Finkel, T. Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. Science 295, 2450–2452 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. van der Horst, A. et al. FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nat. Cell Biol. 8, 1064–1073 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. van der Horst, A. et al. FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J. Biol. Chem. 279, 28873–28879 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Brenkman, A.B. et al. The peptidyl-isomerase Pin1 regulates p27kip1 expression through inhibition of Forkhead box O tumor suppressors. Cancer Res. 68, 7597–7605 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Mahmud, D.L. et al. Phosphorylation of forkhead transcription factors by erythropoietin and stem cell factor prevents acetylation and their interaction with coactivator p300 in erythroid progenitor cells. Oncogene 21, 1556–1562 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Matsuzaki, H. et al. Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. Proc. Natl. Acad. Sci. USA 102, 11278–11283 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Obsilova, V. et al. 14–3-3 Protein interacts with nuclear localization sequence of forkhead transcription factor FoxO4. Biochemistry 44, 11608–11617 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Jelluma, N. et al. Glucose withdrawal induces oxidative stress followed by apoptosis in glioblastoma cells but not in normal human astrocytes. Mol. Cancer Res. 4, 319–330 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Nishiyama, A. et al. Identification of thioredoxin-binding protein-2/vitamin D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression. J. Biol. Chem. 274, 21645–21650 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Kasper, L.H. et al. Two transactivation mechanisms cooperate for the bulk of HIF-1-responsive gene expression. EMBO J. 24, 3846–3858 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alvarez, B., Martinez, A.C., Burgering, B.M. & Carrera, A.C. Forkhead transcription factors contribute to execution of the mitotic programme in mammals. Nature 413, 744–747 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Medema, R.H., Kops, G.J., Bos, J.L. & Burgering, B.M. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404, 782–787 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Lill, N.L., Grossman, S.R., Ginsberg, D., DeCaprio, J. & Livingston, D.M. Binding and modulation of p53 by p300/CBP coactivators. Nature 387, 823–827 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Major, M.L., Lepe, R. & Costa, R.H. Forkhead box M1B transcriptional activity requires binding of Cdk-cyclin complexes for phosphorylation-dependent recruitment of p300/CBP coactivators. Mol. Cell. Biol. 24, 2649–2661 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brent, M.M., Anand, R. & Marmorstein, R. Structural basis for DNA recognition by FoxO1 and its regulation by posttranslational modification. Structure 16, 1407–1416 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tsai, K.L. et al. Crystal structure of the human FOXO3a-DBD/DNA complex suggests the effects of post-translational modification. Nucleic Acids Res. 35, 6984–6994 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Motta, M.C. et al. Mammalian SIRT1 represses forkhead transcription factors. Cell 116, 551–563 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Emerling, B.M., Weinberg, F., Liu, J.L., Mak, T.W. & Chandel, N.S. PTEN regulates p300-dependent hypoxia-inducible factor 1 transcriptional activity through Forkhead transcription factor 3a (FOXO3a). Proc. Natl. Acad. Sci. USA 105, 2622–2627 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Giannakou, M.E. & Partridge, L. The interaction between FOXO and SIRT1: tipping the balance towards survival. Trends Cell Biol. 14, 408–412 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Bjelakovic, G., Nikolova, D., Gluud, L.L., Simonetti, R.G. & Gluud, C. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. J. Am. Med. Assoc. 297, 842–857 (2007).

    Article  CAS  Google Scholar 

  40. Bjelakovic, G., Nikolova, D., Simonetti, R.G. & Gluud, C. Antioxidant supplements for preventing gastrointestinal cancers. Cochrane Database Syst. Rev. CD004183 (2004).

  41. Schulz, T.J. et al. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab. 6, 280–293 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Nishinaka, Y. et al. Importin alpha1 (Rch1) mediates nuclear translocation of thioredoxin-binding protein-2/vitamin D(3)-up-regulated protein 1. J. Biol. Chem. 279, 37559–37565 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Chenna, R. et al. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31, 3497–3500 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang, Y.H. et al. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 30, e15 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank G.J.P.L. Kops and M.B. Toledano for critically reading the manuscript, M. Putker and I. van Zutphen for experimental support, E. Kalkhoven (University Medical Center Utrecht) for reagents and our colleagues for discussions and suggestions. This work was supported by grants from The Netherlands Science Organization (NWO, Vici), KWF (Dutch Cancer Foundation), the Center for Biomedical Genetics (CBG) and the Cancer Genomics Center (CGC).

Author information

Authors and Affiliations

Authors

Contributions

T.B.D. and B.M.T.B. designed most experiments. T.B.D., L.M.M.S., M.H.v.T., P.L.J.d.K., D.v.L., M.G.K., A.S., A.M. and B.M.T.B. performed the experiments and analyzed the data. A.B.B., F.C.P.H. and J.Y. provided essential reagents. T.B.D. and B.M.T.B. wrote the paper.

Corresponding authors

Correspondence to Tobias B Dansen or Boudewijn M T Burgering.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12, Supplementary Table 1 and Supplementary Methods (PDF 5730 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dansen, T., Smits, L., van Triest, M. et al. Redox-sensitive cysteines bridge p300/CBP-mediated acetylation and FoxO4 activity. Nat Chem Biol 5, 664–672 (2009). https://doi.org/10.1038/nchembio.194

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.194

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing