Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

(+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate

Abstract

Hormone-triggered activation of the jasmonate signaling pathway in Arabidopsis thaliana requires SCFCOI1-mediated proteasome degradation of JAZ repressors. (−)-JA-L-Ile is the proposed bioactive hormone, and SCFCOI1 is its likely receptor. We found that the biological activity of (−)-JA-L-Ile is unexpectedly low compared to coronatine and the synthetic isomer (+)-JA-L-Ile, which suggests that the stereochemical orientation of the cyclopentanone-ring side chains greatly affects receptor binding. Detailed GC-MS and HPLC analyses showed that the (−)-JA-L-Ile preparations currently used in ligand binding studies contain small amounts of the C7 epimer (+)-7-iso-JA-L-Ile. Purification of each of these molecules demonstrated that pure (−)-JA-L-Ile is inactive and that the active hormone is (+)-7-iso-JA-L-Ile, which is also structurally more similar to coronatine. In addition, we show that pH changes promote conversion of (+)-7-iso-JA-L-Ile to the inactive (−)-JA-L-Ile form, thus providing a simple mechanism that can regulate hormone activity through epimerization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coronatine promotes COI1-JAZ3 interaction.
Figure 2: (+)-JA-L-Ile is a highly active jasmonate.
Figure 3: (+)-7-iso-JA-L-Ile is the active hormone form, and epimerization to (−)-JA-L-Ile inactivates the hormone.
Figure 4: Methyl esterification reduces hormone activity.

Similar content being viewed by others

References

  1. Devoto, A. et al. Expression profiling reveals COI1 to be a key regulator of genes involved in wound- and methyl jasmonate-induced secondary metabolism, defence, and hormone interactions. Plant Mol. Biol. 58, 497–513 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Farmer, E.E., Almeras, E. & Krishnamurthym, V. Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr. Opin. Plant Biol. 6, 372–378 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Lorenzo, O. & Solano, R. Molecular players regulating the jasmonate signalling network. Curr. Opin. Plant Biol. 8, 532–540 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Pauwels, L. et al. Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells. Proc. Natl. Acad. Sci. USA 105, 1380–1385 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wasternack, C. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot. (Lond.) 100, 681–697 (2007).

    Article  CAS  Google Scholar 

  6. Creelman, R.A. & Mullet, J.E. Biosynthesis and action of jasmonates in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 355–381 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Kramell, R. et al. Occurrence and identification of jasmonic acid and its amino acid conjugates induced by osmotic stress in barley leaf tissue. J. Plant Growth Regul. 14, 29–36 (1995).

    Article  CAS  Google Scholar 

  8. Bartel, B. Auxin biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 51–66 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Sembdner, G., Atzorn, R. & Schneider, G. Plant hormone conjugation. Plant Mol. Biol. 26, 1459–1481 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Katsir, L., Schilmiller, A.L., Staswick, P.E., He, S.Y. & Howe, G.A. COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc. Natl. Acad. Sci. USA 105, 7100–7105 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Staswick, P.E. JAZing up jasmonate signaling. Trends Plant Sci. 13, 66–71 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Staswick, P.E. & Tiryaki, I. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16, 2117–2127 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thines, B. et al. JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448, 661–665 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Weiler, E.W. et al. The Pseudomonas phytotoxin coronatine mimics octadecanoid signalling molecules of higher plants. FEBS Lett. 345, 9–13 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Feys, B., Benedetti, C.E., Penfold, C.N. & Turner, J.G. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6, 751–759 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xie, D.X., Feys, B.F., James, S., Nieto-Rostro, M. & Turner, J.G. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280, 1091–1094 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Chini, A. et al. The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448, 666–671 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Devoto, A. et al. COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J. 32, 457–466 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Xu, L. et al. The SCF(COI1) ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14, 1919–1935 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chini, A., Fonseca, S., Chico, J.M., Fernández-Calvo, P. & Solano, R. The ZIM domain mediates homo- and heteromeric interactions between Arabidopsis JAZ proteins. Plant J. (in the press).

  21. Chung, H.S. & Howe, G.A. A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the JASMONATE ZIM-domain protein JAZ10 in Arabidopsis. Plant Cell 21, 131–145 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chico, J.M., Chini, A., Fonseca, S. & Solano, R. JAZ repressors set the rhythm in jasmonate signaling. Curr. Opin. Plant Biol. 11, 486–494 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Melotto, M. et al. A critical role of two positively charged amino acids in the Jas motif of Arabidopsis JAZ proteins in mediating coronatine- and jasmonoyl isoleucine-dependent interactions with the COI1 F-box protein. Plant J. 55, 979–988 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yan, Y. et al. A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19, 2470–2483 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Feng, S. et al. The COP9 signalosome interacts physically with SCF COI1 and modulates jasmonate responses. Plant Cell 15, 1083–1094 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Blechert, S. et al. Structure-activity analyses reveal the existence of two separate groups of active octadecanoids in elicitation of the tendril-coiling response of Bryonia dioica Jacq. Planta 207, 470–479 (1999).

    Article  CAS  Google Scholar 

  27. Gundlach, H., Muller, M.J., Kutchan, T.M. & Zenk, M.H. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc. Natl. Acad. Sci. USA 89, 2389–2393 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hopke, J., Donath, J., Blechert, S. & Boland, W. Herbivore-induced volatiles: the emission of acyclic homoterpenes from leaves of Phaseolus lunatus and Zea mays can be triggered by a beta-glucosidase and jasmonic acid. FEBS Lett. 352, 146–150 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Miersch, O., Kramell, R., Parthier, B. & Wasternack, C. Structure-activity relations of substituted, deleted or stereospecifically altered jasmonic acid in gene expression of barley leaves. Phytochemistry 50, 353–361 (1999).

    Article  CAS  Google Scholar 

  30. Miersch, O., Neumerkel, J., Dippe, M., Stenzel, I. & Wasternack, C. Hydroxylated jasmonates are commonly occurring metabolites of jasmonic acid and contribute to a partial switch-off in jasmonate signaling. New Phytol. 177, 114–127 (2008).

    CAS  PubMed  Google Scholar 

  31. Ribot, C., Zimmerli, C., Farmer, E.E., Reymond, P. & Poirier, Y. Induction of the Arabidopsis PHO1;H10 gene by 12-oxo-phytodienoic acid but not jasmonic acid via a CORONATINE INSENSITIVE1-dependent pathway. Plant Physiol. 147, 696–706 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stintzi, A., Weber, H., Reymond, P., Browse, J. & Farmer, E.E. Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proc. Natl. Acad. Sci. USA 98, 12837–12842 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Taki, N. et al. 12-oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis. Plant Physiol. 139, 1268–1283 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Uppalapati, S.R. et al. The phytotoxin coronatine and methyl jasmonate impact multiple phytohormone pathways in tomato. Plant J. 42, 201–217 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Holbrook, L. et al. Importance of the chiral centers of jasmonic acid in the responses of plants (activities and antagonism between natural and synthetic analogs). Plant Physiol. 114, 419–428 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kramell, R., Schmidt, J., Schneider, G., Sembdner, G. & Schreiber, K. Synthesis of N-(Jasmonoyl)amino acid conjugates. Tetrahedron 44, 5791–5807 (1988).

    Article  CAS  Google Scholar 

  37. Hause, B. et al. Tissue-specific oxylipin signature of tomato flowers: allene oxide cyclase is highly expressed in distinct flower organs and vascular bundles. Plant J. 24, 113–126 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Miersch, O., Meyer, A., Vorkefeld, S. & Sembdner, G. Occurrence of (+)-7-iso-jasmonic acid in Vicia faba L. and its biological activity. J. Plant Growth Regul. 5, 91–100 (1986).

    Article  CAS  Google Scholar 

  39. Schulze, B., Lauchli, R., Sonwa, M.M., Schmidt, A. & Boland, W. Profiling of structurally labile oxylipins in plants by in situ derivatization with pentafluorobenzyl hydroxylamine. Anal. Biochem. 348, 269–283 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Chung, H.S. et al. Regulation and function of Arabidopsis JASMONATE ZIM-domain genes in response to wounding and herbivory. Plant Physiol. 146, 952–964 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Farmer, E.E. Plant biology: jasmonate perception machines. Nature 448, 659–660 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Stenzel, I. et al. Allene oxide cyclase dependence of the wound response and vascular bundle-specific generation of jasmonates in tomato - amplification in wound signalling. Plant J. 33, 577–589 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Dharmasiri, N., Dharmasiri, S., Jones, A. & Estelle, M. Auxin action in a cell-free system. Curr. Biol. 13, 1418–1422 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Romano, P., He, Z. & Luan, S. Introducing immunophilins. From organ transplantation to plant biology. Plant Physiol. 134, 1241–1243 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shaw, P.E. Peptidyl-prolyl isomerases: a new twist to transcription. EMBO Rep. 3, 521–526 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lorenzo, O., Piqueras, R., Sanchez-Serrano, J.J. & Solano, R. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15, 165–178 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vick, B.A., Zimmerman, D.C. & Weisleder, D. Thermal alteration of a cyclic fatty acid produced by a flaxseed extract. Lipids 14, 734–740 (1979).

    Article  CAS  Google Scholar 

  48. Kramell, R., Schneider, G. & Miersch, O. Chiral separation of amide conjugates of jasmonic acid by liquid chromatography. Chromatographia 45, 104–108 (1997).

    Article  CAS  Google Scholar 

  49. Hammarström, M., Hellgren, N., van Den Berg, S., Berglund, H. & Härd, T. Rapid screening for improved solubility of small human proteins produced as fusion proteins in Escherichia coli. Protein Sci. 11, 313–321 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Swain, T. & Hillis, W.E. The phenolic constituents of Prunus domestica. I. Quantitative analysis of phenolic constituents. J. Sci. Food Agric. 10, 63–68 (1959).

    Article  CAS  Google Scholar 

  51. Ogawa, N. & Kobayashi, Y. Strategy for synthesis of the isoleucine conjugate of epi-jasmonic acid. Tetrahedron Lett. 49, 7124–7127 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Castresana, J.A. Garcia, J. Paz-Ares, V. Rubio and members of the R.S. lab for critical reading of the manuscript and stimulating discussions. We also thank X.-W. Deng (Yale University), who kindly provided seeds for the transgenic plants expressing COI1-flag on a Col-0 background. Vectors pGBKT7gateway and pGADT7gateway were developed by M. Boter (Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas), and the JAZ9 pDONR clone was kindly supplied by J.M. Chico (Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas). We are grateful to R. González and G. Hamberg for technical assistance and to C. Mark for editorial assistance. Chemical structures for the graphical abstract were kindly supplied by A. Segura and F. Pazos. This work was financed by grants to R.S. from the Spanish Ministerio de Ciencia y Tecnología (BIO2004-02502, BIO2007-66935, GEN2003-20218-C02-02 and CSD2007-00057-B) and from the Comunidad de Madrid (GR/SAL/0674/2004). S.F. was supported by postdoctoral fellowships from the Portuguese Foundation for Science and Technology (BPD/21045/2004) and from the Spanish Ministerio de Educación y Ciencia (JAEDoc015). A.C. was supported by a Juan de la Cierva Fellowship from the Spanish Ministerio de Educación y Ciencia and a European Molecular Biology Organization Long-Term Fellowship. B.A. received postdoctoral fellowships from the European Union (CRISP project HPRN-CT-2000-00093) and the Spanish Ministerio de Educación y Ciencia (GEN2003-20218-C02-02).

Author information

Authors and Affiliations

Authors

Contributions

S.F. performed all pulldown experiments and phenotypic analyses. A.C. and B.A. performed all yeast two-hybrid experiments. M.H. synthesized and purified compounds 6, 8, 10, 11, 12 and 18, wrote the corresponding results and methods sections and corrected the manuscript. A.P. made NMR analyses. R.K. and O.M. provided the compounds described in Supplementary Table 1 (except 8, 11, 12 and 18). C.W. supervised work by A.P., R.K. and O.M. and corrected the manuscript. R.S. designed experiments, supervised the work and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Roberto Solano.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–5, Supplementary Tables 1–3 and Supplementary Methods (PDF 18296 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fonseca, S., Chini, A., Hamberg, M. et al. (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5, 344–350 (2009). https://doi.org/10.1038/nchembio.161

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.161

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing