Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Opportunities in metabolic engineering to facilitate scalable alkaloid production

Abstract

Numerous drugs and drug precursors in the current pharmacopoeia originate from plant sources. The limited yield of some bioactive compounds in plant tissues, however, presents a significant challenge for large-scale drug development. Metabolic engineering has facilitated the development of plant cell and tissue systems as alternative production platforms that can be scaled up in a controlled environment. Nevertheless, effective metabolic engineering approaches and the predictability of genetic transformations are often obscured due to the myriad cellular complexities. Progress in systems biology has aided the understanding of genome-wide interconnectivities in plant-based systems. In parallel, the bottom-up assembly of plant biosynthetic pathways in microorganisms demonstrated the possibilities of a new means of production. In this Perspective, we discuss the opportunities and challenges of implementing metabolic engineering in various platforms for the synthesis of natural and unnatural plant alkaloids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relative complexities of plant and microbial systems.

Similar content being viewed by others

References

  1. Costantino, L. & Barlocco, D. Privileged structures as leads in medicinal chemistry. Curr. Med. Chem. 13, 65–85 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Evans, B.E. et al. Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J. Med. Chem. 31, 2235–2246 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. Horton, D.A., Bourne, G.T. & Smythe, M.L. The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem. Rev. 103, 893–930 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Maclean, D. et al. Glossary of terms used in combinatorial chemistry (technical report). J. Comb. Chem. 2, 562–578 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Koehn, F.E. & Carter, G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov. 4, 206–220 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Maplestone, R.A., Stone, M.J. & Williams, D.H. The evolutionary role of secondary metabolites–a review. Gene 115, 151–157 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Williams, D.H., Stone, M.J., Hauck, P.R. & Rahman, S.K. Why are secondary metabolites (natural products) biosynthesized? J. Nat. Prod. 52, 1189–1208 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Newman, D.J. & Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod. 70, 461–477 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Beghyn, T., Deprez-Poulain, R., Willand, N., Folleas, B. & Deprez, B. Natural compounds: leads or ideas? Bioinspired molecules for drug discovery. Chem. Biol. Drug Des. 72, 3–15 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Facchini, P.J. & De Luca, V. Opium poppy and Madagascar periwinkle: model non-model systems to investigate alkaloid biosynthesis in plants. Plant J. 54, 763–784 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Kutchan, T.M. Alkaloid biosynthesis—the basis for metabolic engineering of medicinal plants. Plant Cell 7, 1059–1070 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Verpoorte, R., van der Heijden, R. & Memelink, J. Engineering the plant cell factory for secondary metabolite production. Transgenic Res. 9, 323–343, discussion 321 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Hartmann, T. Plant-derived secondary metabolites as defensive chemicals in herbivorous insects: a case study in chemical ecology. Planta 219, 1–4 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Kuboyama, T., Yokoshima, S., Tokuyama, H. & Fukuyama, T. Stereocontrolled total synthesis of (+)-vincristine. Proc. Natl. Acad. Sci. USA 101, 11966–11970 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Miyazaki, T. et al. Synthesis of (+)-vinblastine and its analogues. Org. Lett. 9, 4737–4740 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Uchida, K., Yokoshima, S., Kan, T. & Fukuyama, T. Total synthesis of (+/−)-morphine. Org. Lett. 8, 5311–5313 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Yokoshima, S. et al. Stereocontrolled total synthesis of (+)-vinblastine. J. Am. Chem. Soc. 124, 2137–2139 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Liscombe, D.K. & Facchini, P.J. Evolutionary and cellular webs in benzylisoquinoline alkaloid biosynthesis. Curr. Opin. Biotechnol. 19, 173–180 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. O'Connor, S.E. & Maresh, J.J. Chemistry and biology of monoterpene indole alkaloid biosynthesis. Nat. Prod. Rep. 23, 532–547 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Maresh, J.J. et al. Strictosidine synthase: mechanism of a Pictet-Spengler catalyzing enzyme. J. Am. Chem. Soc. 130, 710–723 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sato, F. et al. Metabolic engineering of plant alkaloid biosynthesis. Proc. Natl. Acad. Sci. USA 98, 367–372 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Ashihara, H., Sano, H. & Crozier, A. Caffeine and related purine alkaloids: biosynthesis, catabolism, function and genetic engineering. Phytochemistry 69, 841–856 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Ogita, S., Uefuji, H., Yamaguchi, Y., Koizumi, N. & Sano, H. Producing decaffeinated coffee plants. Nature 423, 823 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Uefuji, H. et al. Caffeine production in tobacco plants by simultaneous expression of three coffee N-methyltrasferases and its potential as a pest repellant. Plant Mol. Biol. 59, 221–227 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Yun, D.J., Hashimoto, T. & Yamada, Y. Metabolic engineering of medicinal plants: transgenic Atropa belladonna with an improved alkaloid composition. Proc. Natl. Acad. Sci. USA 89, 11799–11803 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Larkin, P.J. et al. Increasing morphinan alkaloid production by over-expressing codeinone reductase in transgenic Papaver somniferum. Plant Biotechnol. J. 5, 26–37 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Allen, R.S. et al. RNAi-mediated replacement of morphine with the nonnarcotic alkaloid reticuline in opium poppy. Nat. Biotechnol. 22, 1559–1566 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Frick, S., Kramell, R. & Kutchan, T.M. Metabolic engineering with a morphine biosynthetic P450 in opium poppy surpasses breeding. Metab. Eng. 9, 169–176 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Ye, K. et al. Opium alkaloid noscapine is an antitumor agent that arrests metaphase and induces apoptosis in dividing cells. Proc. Natl. Acad. Sci. USA 95, 1601–1606 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stafford, A.M., Pazoles, C.J., Siegel, S. & Yeh, L.-A. Plant Cell Culture: a Vehicle for Drug Delivery (John Wiley & Sons, New York, 1998).

    Google Scholar 

  31. Yukimune, Y., Tabata, H., Higashi, Y. & Hara, Y. Methyl jasmonate-induced overproduction of paclitaxel and baccatin III in Taxus cell suspension cultures. Nat. Biotechnol. 14, 1129–1132 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Witherup, K.M. et al. Taxus spp. needles contain amounts of taxol comparable to the bark of Taxus brevifolia: analysis and isolation. J. Nat. Prod. 53, 1249–1255 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Touno, K., Tamaoka, J., Ohashi, Y. & Shimomura, K. Ethylene induced shikonin biosynthesis in shoot culture of Lithospermum erythrorhizon. Plant Physiol. Biochem. 43, 101–105 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Gamborg, O.L. Plant tissue culture. Biotechnology. Milestones. In Vitro Cell. Dev. Biol. Plant 38, 84–92 (2002).

    Article  Google Scholar 

  35. Filner, P., Varner, J.E. & Wray, J.L. Environmental or developmental changes cause many enzyme activities of higher plants to rise or fall. Science 165, 358–367 (1969).

    Article  CAS  PubMed  Google Scholar 

  36. Shanks, J.V. & Morgan, J. Plant 'hairy root' culture. Curr. Opin. Biotechnol. 10, 151–155 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. De Luca, V. & St Pierre, B. The cell and developmental biology of alkaloid biosynthesis. Trends Plant Sci. 5, 168–173 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Vázquez-Flota, F.A., St-Pierre, B. & De Luca, V. Light activation of vindoline biosynthesis does not require cytomorphogenesis in Catharanthus roseus seedlings. Phytochemistry 55, 531–536 (2000).

    Article  PubMed  Google Scholar 

  39. Zhang, L. et al. Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proc. Natl. Acad. Sci. USA 101, 6786–6791 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Canel, C. et al. Effects of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus. Planta 205, 414–419 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Hughes, E.H., Hong, S.B., Gibson, S.I., Shanks, J.V. & San, K.Y. Expression of a feedback-resistant anthranilate synthase in Catharanthus roseus hairy roots provides evidence for tight regulation of terpenoid indole alkaloid levels. Biotechnol. Bioeng. 86, 718–727 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Hughes, E.H., Hong, S.B., Gibson, S.I., Shanks, J.V. & San, K.Y. Metabolic engineering of the indole pathway in Catharanthus roseus hairy roots and increased accumulation of tryptamine and serpentine. Metab. Eng. 6, 268–276 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Hong, S.B., Peebles, C.A., Shanks, J.V., San, K.Y. & Gibson, S.I. Expression of the Arabidopsis feedback-insensitive anthranilate synthase holoenzyme and tryptophan decarboxylase genes in Catharanthus roseus hairy roots. J. Biotechnol. 122, 28–38 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Whitmer, S., Canel, C., Hallard, D., Goncalves, C. & Verpoorte, R. Influence of precursor availability on alkaloid accumulation by transgenic cell line of Catharanthus roseus. Plant Physiol. 116, 853–857 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Whitmer, S., van der Heijden, R. & Verpoorte, R. Effect of precursor feeding on alkaloid accumulation by a tryptophan decarboxylase over-expressing transgenic cell line T22 of Catharanthus roseus. J. Biotechnol. 96, 193–203 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Morgan, J.A. & Shanks, J.V. Determination of metabolic rate-limitations by precursor feeding in Catharanthus roseus hairy root cultures. J. Biotechnol. 79, 137–145 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Magnotta, M., Murata, J., Chen, J. & De Luca, V. Expression of deacetylvindoline-4-O-acetyltransferase in Catharanthus roseus hairy roots. Phytochemistry 68, 1922–1931 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Schwender, J., Goffman, F., Ohlrogge, J.B. & Shachar-Hill, Y. Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature 432, 779–782 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Schwender, J., Ohlrogge, J. & Shachar-Hill, Y. Understanding flux in plant metabolic networks. Curr. Opin. Plant Biol. 7, 309–317 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Sriram, G., Fulton, D.B. & Shanks, J.V. Flux quantification in central carbon metabolism of Catharanthus roseus hairy roots by 13C labeling and comprehensive bondomer balancing. Phytochemistry 68, 2243–2257 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Sriram, G. & Shanks, J.V. Improvements in metabolic flux analysis using carbon bond labeling experiments: bondomer balancing and Boolean function mapping. Metab. Eng. 6, 116–132 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Rischer, H. et al. Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. Proc. Natl. Acad. Sci. USA 103, 5614–5619 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. van der Fits, L. & Memelink, J. ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289, 295–297 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Menke, F.L., Champion, A., Kijne, J.W. & Memelink, J. A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO J. 18, 4455–4463 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Peebles, C.A., Hughes, E.H., Shanks, J.V. & San, K.Y. Transcriptional response of the terpenoid indole alkaloid pathway to the overexpression of ORCA3 along with jasmonic acid elicitation of Catharanthus roseus hairy roots over time. Metab. Eng. 11, 76–86 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Chen, S., Galan, M.C., Coltharp, C. & O'Connor, S.E. Redesign of a central enzyme in alkaloid biosynthesis. Chem. Biol. 13, 1137–1141 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. O'Hagan, D. et al. Fluorinated tropane alkaloids generated by directed biosynthesis in transformed root cultures of Datura stramonium. J. Chem. Soc. [Perkin 1] 1, 2117–2120 (1999).

    Article  Google Scholar 

  58. McCoy, E., Galan, M.C. & O'Connor, S.E. Substrate specificity of strictosidine synthase. Bioorg. Med. Chem. Lett. 16, 2475–2478 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. McCoy, E. & O'Connor, S.E. Directed biosynthesis of alkaloid analogs in the medicinal plant Catharanthus roseus. J. Am. Chem. Soc. 128, 14276–14277 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Ma, X., Panjikar, S., Koepke, J., Loris, E. & Stockigt, J. The structure of Rauvolfia serpentina strictosidine synthase is a novel six-bladed beta-propeller fold in plant proteins. Plant Cell 18, 907–920 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Loris, E.A. et al. Structure-based engineering of strictosidine synthase: auxiliary for alkaloid libraries. Chem. Biol. 14, 979–985 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Bernhardt, P., McCoy, E. & O'Connor, S.E. Rapid identification of enzyme variants for reengineered alkaloid biosynthesis in periwinkle. Chem. Biol. 14, 888–897 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Runguphan, W. & O'Connor, S.E. Metabolic reprogramming of periwinkle plant culture. Nat. Chem. Biol. 5, 151–153 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Minami, H. et al. Microbial production of plant benzylisoquinoline alkaloids. Proc. Natl. Acad. Sci. USA 105, 7393–7398 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hawkins, K.M. & Smolke, C.D. Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nat. Chem. Biol. 4, 564–573 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nevoigt, E. et al. Engineering of promoter replacement cassettes for fine-tuning of gene expression in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 72, 5266–5273 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Geerlings, A. et al. Biotransformation of tryptamine and secologanin into plant terpenoid indole alkaloids by transgenic yeast. Appl. Microbiol. Biotechnol. 56, 420–424 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Chang, M.C., Eachus, R.A., Trieu, W., Ro, D.K. & Keasling, J.D. Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat. Chem. Biol. 3, 274–277 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Leonard, E. & Koffas, M.A. Engineering of artificial plant cytochrome P450 enzymes for synthesis of isoflavones by Escherichia coli. Appl. Environ. Microbiol. 73, 7246–7251 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Leonard, E., Lim, K.H., Saw, P.N. & Koffas, M.A. Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli. Appl. Environ. Microbiol. 73, 3877–3886 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Leonard, E. et al. Strain improvement of recombinant Escherichia coli for efficient production of plant flavonoids. Mol. Pharm. 5, 257–265 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Ro, D.K. et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440, 940–943 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. McCoy, E. & O'Connor, S.E. Natural products from plant cell cultures. Prog. Drug Res. 65, 329, 331–370 (2008).

    Google Scholar 

  74. Roberts, S.C. Production and engineering of terpenoids in plant cell culture. Nat. Chem. Biol. 3, 387–395 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. St-Pierre, B., Vazquez-Flota, F.A. & De Luca, V. Multicellular compartmentation of catharanthus roseus alkaloid biosynthesis predicts intercellular translocation of a pathway intermediate. Plant Cell 11, 887–900 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bhadra, R., Vani, S. & Shanks, J.V. Production of indole alkaloids by selected hairy root lines of Catharanthus roseus. Biotechnol. Bioeng. 41, 581–592 (1993).

    Article  CAS  PubMed  Google Scholar 

  77. Shanks, J.V., Bhadra, R., Morgan, J., Rijhwani, S. & Vani, S. Quantification of metabolites in the indole alkaloid pathways of Catharanthus roseus: implications for metabolic engineering. Biotechnol. Bioeng. 58, 333–338 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Morgan, J.A. & Shanks, J.V. Quantification of metabolic flux in plant secondary metabolism by a biogenetic organizational approach. Metab. Eng. 4, 257–262 (2002).

    Article  PubMed  CAS  Google Scholar 

  79. Rischer, H. & Oksman-Caldentey, K.M. Unintended effects in genetically modified crops: revealed by metabolomics? Trends Biotechnol. 24, 102–104 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Gantet, P. & Memelink, J. Transcription factors: tools to engineer the production of pharmacologically active plant metabolites. Trends Pharmacol. Sci. 23, 563–569 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Kizer, L., Pitera, D.J., Pfleger, B.F. & Keasling, J.D. Application of functional genomics to pathway optimization for increased isoprenoid production. Appl. Environ. Microbiol. 74, 3229–3241 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Alper, H., Moxley, J., Nevoigt, E., Fink, G.R. & Stephanopoulos, G. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314, 1565–1568 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Pakrashi, S.C., Djerassi, C., Wasicky, R. & Neuss, N. Alkaloid studies. IX.1 Rauwolfia alkaloids. IV.2 Isolation of reserpine and other alkaloids from Rauwolfia sellowii muell. Argov.3. J. Am. Chem. Soc. 77, 6687–6689 (1955).

    Article  CAS  Google Scholar 

  84. Kosalec, I. et al. Croatian barberry (Berberis croatica Horvat): a new source of berberine-analysis and antimicrobial activity. World J. Microbiol. Biotechnol. 25, 145–150 (2009).

    Article  CAS  Google Scholar 

  85. Carvalho, A., Tango, J.S. & Monaco, L.C. Genetic control of caffeine in coffee. Nature 205, 314 (1965).

    Article  CAS  Google Scholar 

  86. Wiedenfeld, H., Furmanowa, M., Roeder, E., Guzewska, J. & Gustowski, W. Camptothecin and 10-hydroxycamptothecin in callus and plantlets of Camptotheca acuminata. Plant Cell Tissue Organ Eng. 49, 213–218 (1997).

    Article  CAS  Google Scholar 

  87. Johnson, E. & Emche, S. Variation of alkaloid content in Erythroxylum coca leaves from leaf bud to leaf drop. Ann. Bot. (Lond.) 73, 645–650 (1994).

    Article  CAS  Google Scholar 

  88. Kalant, H. Opium revisited: a brief review of its nature, composition, non-medical use and relative risks. Addiction 92, 267–277 (1997).

    CAS  PubMed  Google Scholar 

  89. Mateus, L., Cherkaoui, S., Christen, P. & Oksman-Caldentey, K.M. Simultaneous determination of scopolamine, hyoscyamine and littorine in plants and different hairy root clones of Hyoscyamus muticus by micellar electrokinetic chromatography. Phytochemistry 54, 517–523 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Saunders, J.W. & Bush, L.P. Nicotine biosynthetic enzyme activities in Nicotiana tabacum L. genotypes with different alkaloid levels. Plant Physiol. 64, 236–240 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hagel, J.M., Weljie, A.M., Vogel, H.J. & Facchini, P.J. Quantitative 1H nuclear magnetic resonance metabolite profiling as a functional genomics platform to investigate alkaloid biosynthesis in opium poppy. Plant Physiol. 147, 1805–1821 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. McCalley, D. Quantitative analysis of alkaloids from Cinchona bark by high-performance liquid chromatography. Analyst (Lond.) 115, 1355–1358 (1990).

    Article  CAS  Google Scholar 

  93. Amer, M.A. & Court, W.E. Alkaloids of Rauwolfia nitida root bark. Phytochemistry 20, 2569–2573 (1981).

    Article  CAS  Google Scholar 

  94. Baser, K.H., Bisset, N.G. & Hylands, P.J. Protostrychnine, a new alkaloid from Strychnos nux-vomica. Phytochemistry 18, 512–514 (1979).

    Article  CAS  Google Scholar 

  95. Datta, A. & Srivastava, P.S. Variation in vinblastine production by Catharanthus roseus, during in vivo and in vitro differentiation. Phytochemistry 46, 135–137 (1997).

    Article  CAS  Google Scholar 

  96. Chen, Q. et al. Analysis of yohimbine alkaloid from Pausinystalia yohimbe by non-aqueous capillary electrophoresis and gas chromatography-mass spectrometry. J. Sep. Sci. 31, 2211–2218 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the constructive discussion and contribution of M. Tackett (Whitehead Institute for Biomedical Research and Department of Biology, MIT). Research in the Prather laboratory is supported by the US National Science Foundation/Synthetic Biology Engineering Research Center (SynBERC; grant no. 0540879) and the MIT Energy Initiative (grant no. 6917278). Research in the O'Connor laboratory is funded by the US National Institutes of Health (GM074820) and the US National Science Foundation (MCB-0719120).

Author information

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leonard, E., Runguphan, W., O'Connor, S. et al. Opportunities in metabolic engineering to facilitate scalable alkaloid production. Nat Chem Biol 5, 292–300 (2009). https://doi.org/10.1038/nchembio.160

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.160

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing