Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular docking and ligand specificity in fragment-based inhibitor discovery

Abstract

Fragment screens have successfully identified new scaffolds in drug discovery, often with relatively high hit rates (5%) using small screening libraries (1,000–10,000 compounds). This raises two questions: would other noteworthy chemotypes be found were one to screen all commercially available fragments (>300,000), and does the success rate imply low specificity of fragments? We used molecular docking to screen large libraries of fragments against CTX-M β-lactamase. We identified ten millimolar-range inhibitors from the 69 compounds tested. The docking poses corresponded closely to the crystallographic structures subsequently determined. Notably, these initial low-affinity hits showed little specificity between CTX-M and an unrelated β-lactamase, AmpC, which is unusual among β-lactamase inhibitors. This is consistent with the idea that the high hit rates among fragments correlate to a low initial specificity. As the inhibitors were progressed, both specificity and affinity rose together, yielding to our knowledge the first micromolar-range noncovalent inhibitors against a class A β-lactamase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structures of fragment inhibitors and optimized derivatives against CTX-M.
Figure 2: Inhibition and binding of compound 12.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Rees, D.C., Congreve, M., Murray, C.W. & Carr, R. Fragment-based lead discovery. Nat. Rev. Drug Discov. 3, 660–672 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Congreve, M., Chessari, G., Tisi, D. & Woodhead, A.J. Recent developments in fragment-based drug discovery. J. Med. Chem. 51, 3661–3680 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Murray, C.W. et al. Application of fragment screening by X-ray crystallography to beta-secretase. J. Med. Chem. 50, 1116–1123 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Haydon, D.J. et al. An inhibitor of FtsZ with potent and selective anti-staphylococcal activity. Science 321, 1673–1675 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Card, G.L. et al. A family of phosphodiesterase inhibitors discovered by cocrystallography and scaffold-based drug design. Nat. Biotechnol. 23, 201–207 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Edwards, P.D. et al. Application of fragment-based lead generation to the discovery of novel, cyclic amidine beta-secretase inhibitors with nanomolar potency, cellular activity, and high ligand efficiency. J. Med. Chem. 50, 5912–5925 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Fahr, B.T. et al. Tethering identifies fragment that yields potent inhibitors of human caspase-1. Bioorg. Med. Chem. Lett. 16, 559–562 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677–681 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Shuker, S.B., Hajduk, P.J., Meadows, R.P. & Fesik, S.W. Discovering high-affinity ligands for proteins: SAR by NMR. Science 274, 1531–1534 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Pellecchia, M. et al. Perspectives on NMR in drug discovery: a technique comes of age. Nat. Rev. Drug Discov. 7, 738–745 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hartshorn, M.J. et al. Fragment-based lead discovery using X-ray crystallography. J. Med. Chem. 48, 403–413 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Sweeney, Z.K. et al. Discovery of triazolinone non-nucleoside inhibitors of HIV reverse transcriptase. Bioorg. Med. Chem. Lett. 18, 4348–4351 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Huang, J.W. et al. Fragment-based design of small molecule X-linked inhibitor of apoptosis protein inhibitors. J. Med. Chem. 51, 7111–7118 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Marcou, G. & Rognan, D. Optimizing fragment and scaffold docking by use of molecular interaction fingerprints. J. Chem. Inf. Model. 47, 195–207 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Hubbard, R.E., Chen, I. & Davis, B. Informatics and modeling challenges in fragment-based drug discovery. Curr. Opin. Drug Discov. Devel. 10, 289–297 (2007).

    CAS  PubMed  Google Scholar 

  16. Klebe, G. Virtual ligand screening: strategies, perspectives and limitations. Drug Discov. Today 11, 580–594 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hann, M.M., Leach, A.R. & Harper, G. Molecular complexity and its impact on the probability of finding leads for drug discovery. J. Chem. Inf. Comput. Sci. 41, 856–864 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Bonnet, R. Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob. Agents Chemother. 48, 1–14 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen, Y., Delmas, J., Sirot, J., Shoichet, B. & Bonnet, R. Atomic resolution structures of CTX-M beta-lactamases: extended spectrum activities from increased mobility and decreased stability. J. Mol. Biol. 348, 349–362 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Oprea, T.I., Davis, A.M., Teague, S.J. & Leeson, P.D. Is there a difference between leads and drugs? A historical perspective. J. Chem. Inf. Comput. Sci. 41, 1308–1315 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Massova, I. & Mobashery, S. Kinship and diversification of bacterial penicillin-binding proteins and beta-lactamases. Antimicrob. Agents Chemother. 42, 1–17 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Payne, D.J., Gwynn, M.N., Holmes, D.J. & Pompliano, D.L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov. 6, 29–40 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. O'Shea, R. & Moser, H.E. Physicochemical properties of antibacterial compounds: implications for drug discovery. J. Med. Chem. 51, 2871–2878 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Beadle, B.M., Trehan, I., Focia, P. & Shoichet, B.K. Structural milestones in the pathway of an amide hydrolase: substrate, acyl, and product complexes of cephalothin with AmpC b-lactamase. Structure 10, 413–424 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Kumar, S., Pearson, A.L. & Pratt, R.F. Design, synthesis, and evaluation of alpha-ketoheterocycles as class C beta-lactamase inhibitors. Bioorg. Med. Chem. 9, 2035–2044 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Ibuka, A.S. et al. Crystal structure of extended-spectrum beta-lactamase Toho-1: insights into the molecular mechanism for catalytic reaction and substrate specificity expansion. Biochemistry 42, 10634–10643 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Chen, Y., Shoichet, B. & Bonnet, R. Structure, function, and inhibition along the reaction coordinate of CTX-M beta-lactamases. J. Am. Chem. Soc. 127, 5423–5434 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Babaoglu, K. et al. Comprehensive mechanistic analysis of hits from high-throughput and docking screens against beta-lactamase. J. Med. Chem. 51, 2502–2511 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Powers, R.A., Morandi, F. & Shoichet, B.K. Structure-based discovery of a novel, noncovalent inhibitor of AmpC beta-lactamase. Structure 10, 1013–1023 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Chen, Y., Bonnet, R. & Shoichet, B.K. The acylation mechanism of CTX-M beta-lactamase at 0.88 a resolution. J. Am. Chem. Soc. 129, 5378–5380 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Graves, A.P. et al. Rescoring docking hit lists for model cavity sites: predictions and experimental testing. J. Mol. Biol. 377, 914–934 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lorber, D.M. & Shoichet, B.K. Hierarchical docking of databases of multiple ligand conformations. Curr. Top. Med. Chem. 5, 739–749 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Irwin, J.J. & Shoichet, B.K. ZINC–a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 45, 177–182 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lorber, D.M. & Shoichet, B.K. Flexible ligand docking using conformational ensembles. Protein Sci. 7, 938–950 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang, N., Shoichet, B.K. & Irwin, J.J. Benchmarking sets for molecular docking. J. Med. Chem. 49, 6789–6801 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Meng, E.C., Gschwend, D.C., Blaney, J.M. & Kuntz, I.D. Orientational sampling and rigid-body minimization in molecular docking. Proteins 17, 266–278 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Shoichet, B.K., Leach, A.R. & Kuntz, I.D. Ligand solvation in molecular docking. Proteins 34, 4–16 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. McGovern, S.L., Caselli, E., Grigorieff, N. & Shoichet, B.K. A common mechanism underlying promiscuous inhibitors from virtual and high-throughput screening. J. Med. Chem. 45, 1712–1722 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr 50, 760–763 (1994).

  41. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grants GM63813 and GM59957 (to B.K.S.). We thank D.G. Teotico (University of California, San Francisco) for providing the AmpC inhibitors and for insightful discussions, and J. Hert and C. Laggner for assistance with similarity search. We thank D.G. Teotico, S. Boyce, M. Mysinger and J. Irwin for reading the manuscript. We also thank R. Bonnet.

Author information

Authors and Affiliations

Authors

Contributions

This project was designed by Y.C. and B.K.S. together; all the experiments were undertaken by Y.C. Both authors contributed to interpreting the results and writing the paper.

Corresponding author

Correspondence to Brian K Shoichet.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Tables 1 and 2 (PDF 271 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Shoichet, B. Molecular docking and ligand specificity in fragment-based inhibitor discovery. Nat Chem Biol 5, 358–364 (2009). https://doi.org/10.1038/nchembio.155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.155

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing