Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Zinc activates damage-sensing TRPA1 ion channels

Abstract

Zinc is an essential biological trace element. It is required for the structure or function of over 300 proteins, and it is increasingly recognized for its role in cell signaling. However, high concentrations of zinc have cytotoxic effects, and overexposure to zinc can cause pain and inflammation through unknown mechanisms. Here we show that zinc excites nociceptive somatosensory neurons and causes nociception in mice through TRPA1, a cation channel previously shown to mediate the pungency of wasabi and cinnamon through cysteine modification. Zinc activates TRPA1 through a unique mechanism that requires zinc influx through TRPA1 channels and subsequent activation via specific intracellular cysteine and histidine residues. TRPA1 is highly sensitive to intracellular zinc, as low nanomolar concentrations activate TRPA1 and modulate its sensitivity. These findings identify TRPA1 as an important target for the sensory effects of zinc and support an emerging role for zinc as a signaling molecule that can modulate sensory transmission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Zinc activates sensory neurons through TRPA1.
Figure 2: TRPA1 mediates zinc-induced nocifensive behavior.
Figure 3: Zinc activates TRPA1 through intracellular sites.
Figure 4: Zinc permeation through TRPA1 is required for activation by extracellular zinc.
Figure 5: Role of cysteine and histidine residues in TRPA1 activation by zinc.
Figure 6: H983A and C641S C1021S double mutant exhibit decreased intracellular zinc sensitivity.

Similar content being viewed by others

References

  1. Vallee, B.L. & Falchuk, K.H. The biochemical basis of zinc physiology. Physiol. Rev. 73, 79–118 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Frederickson, C.J., Koh, J.Y. & Bush, A.I. The neurobiology of zinc in health and disease. Nat. Rev. Neurosci. 6, 449–462 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Barceloux, D.G. Zinc. J. Toxicol. Clin. Toxicol. 37, 279–292 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Blanc, P.D., Boushey, H.A., Wong, H., Wintermeyer, S.F. & Bernstein, M.S. Cytokines in metal fume fever. Am. Rev. Respir. Dis. 147, 134–138 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Adamson, I.Y., Prieditis, H., Hedgecock, C. & Vincent, R. Zinc is the toxic factor in the lung response to an atmospheric particulate sample. Toxicol. Appl. Pharmacol. 166, 111–119 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Kuschner, W.G., D'Alessandro, A., Wong, H. & Blanc, P.D. Early pulmonary cytokine responses to zinc oxide fume inhalation. Environ. Res. 75, 7–11 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Ozaktay, A.C. et al. Effects of interleukin-1 beta, interleukin-6, and tumor necrosis factor on sensitivity of dorsal root ganglion and peripheral receptive fields in rats. Eur. Spine J. 15, 1529–1537 (2006).

    Article  PubMed  Google Scholar 

  8. Patapoutian, A., Tate, S. & Woolf, C.J. Transient receptor potential channels: targeting pain at the source. Nat. Rev. Drug Discov. 8, 55–68 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Caterina, M.J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997).

    CAS  PubMed  Google Scholar 

  10. Story, G.M. et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112, 819–829 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Bandell, M. et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41, 849–857 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Jordt, S.E. et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427, 260–265 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Macpherson, L.J. et al. The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr. Biol. 15, 929–934 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Obata, K. et al. TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J. Clin. Invest. 115, 2393–2401 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bautista, D.M. et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124, 1269–1282 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Kwan, K.Y. et al. TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50, 277–289 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Dhaka, A., Viswanath, V. & Patapoutian, A. TRP ion channels and temperature sensation. Annu. Rev. Neurosci. 29, 135–161 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Riera, C.E., Vogel, H., Simon, S.A. & le Coutre, J. Artificial sweeteners and salts producing a metallic taste sensation activate TRPV1 receptors. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R626–R634 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Macpherson, L.J. et al. An ion channel essential for sensing chemical damage. J. Neurosci. 27, 11412–11415 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McNamara, C.R. et al. TRPA1 mediates formalin-induced pain. Proc. Natl. Acad. Sci. USA 104, 13525–13530 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Macpherson, L.J. et al. More than cool: promiscuous relationships of menthol and other sensory compounds. Mol. Cell. Neurosci. 32, 335–343 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Gee, K.R., Zhou, Z.L., Ton-That, D., Sensi, S.L. & Weiss, J.H. Measuring zinc in living cells. A new generation of sensitive and selective fluorescent probes. Cell Calcium 31, 245–251 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Xu, H., Delling, M., Jun, J.C. & Clapham, D.E. Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat. Neurosci. 9, 628–635 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Karashima, Y. et al. Bimodal action of menthol on the transient receptor potential channel TRPA1. J. Neurosci. 27, 9874–9884 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, Y.Y., Chang, R.B., Waters, H.N., McKemy, D.D. & Liman, E.R. The nociceptor ion channel TRPA1 is potentiated and inactivated by permeating calcium ions. J. Biol. Chem. 283, 32691–32703 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Patel, K., Kumar, A. & Durani, S. Analysis of the structural consensus of the zinc coordination centers of metalloprotein structures. Biochim. Biophys. Acta 1774, 1247–1253 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Macpherson, L.J. et al. Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445, 541–545 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Hinman, A., Chuang, H.H., Bautista, D.M. & Julius, D. TRP channel activation by reversible covalent modification. Proc. Natl. Acad. Sci. USA 103, 19564–19568 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Barnhart, S. & Rosenstock, L. Cadmium chemical pneumonitis. Chest 86, 789–791 (1984).

    Article  CAS  PubMed  Google Scholar 

  30. Nordberg, G. Excursions of intake above ADI: case study on cadmium. Regul. Toxicol. Pharmacol. 30, S57–S62 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Yamasaki, S. et al. Zinc is a novel intracellular second messenger. J. Cell Biol. 177, 637–645 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mathie, A., Sutton, G.L., Clarke, C.E. & Veale, E.L. Zinc and copper: pharmacological probes and endogenous modulators of neuronal excitability. Pharmacol. Ther. 111, 567–583 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Hershfinkel, M., Moran, A., Grossman, N. & Sekler, I. A zinc-sensing receptor triggers the release of intracellular Ca2+ and regulates ion transport. Proc. Natl. Acad. Sci. USA 98, 11749–11754 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Krezel, A., Hao, Q. & Maret, W. The zinc/thiolate redox biochemistry of metallothionein and the control of zinc ion fluctuations in cell signaling. Arch. Biochem. Biophys. 463, 188–200 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Jo, S.M., Danscher, G., Schroder, H.D. & Suh, S.W. Depletion of vesicular zinc in dorsal horn of spinal cord causes increased neuropathic pain in mice. Biometals 21, 151–158 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Velazquez, R.A., Cai, Y., Shi, Q. & Larson, A.A. The distribution of zinc selenite and expression of metallothionein-III mRNA in the spinal cord and dorsal root ganglia of the rat suggest a role for zinc in sensory transmission. J. Neurosci. 19, 2288–2300 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Danscher, G. et al. Inhibitory zinc-enriched terminals in mouse spinal cord. Neuroscience 105, 941–947 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Kosugi, M., Nakatsuka, T., Fujita, T., Kuroda, Y. & Kumamoto, E. Activation of TRPA1 channel facilitates excitatory synaptic transmission in substantia gelatinosa neurons of the adult rat spinal cord. J. Neurosci. 27, 4443–4451 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Larson, A.A. & Kitto, K.F. Manipulations of zinc in the spinal cord, by intrathecal injection of zinc chloride, disodium-calcium-EDTA, or dipicolinic acid, alter nociceptive activity in mice. J. Pharmacol. Exp. Ther. 282, 1319–1325 (1997).

    CAS  PubMed  Google Scholar 

  40. Safieh-Garabedian, B. et al. Zinc reduces the hyperalgesia and upregulation of NGF and IL-1 beta produced by peripheral inflammation in the rat. Neuropharmacology 35, 599–603 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Nelson, M.T. et al. Reducing agents sensitize C-type nociceptors by relieving high-affinity zinc inhibition of T-type calcium channels. J. Neurosci. 27, 8250–8260 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. King, J.C., Shames, D.M. & Woodhouse, L.R. Zinc homeostasis in humans. J. Nutr. 130, 1360S–1366S (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Gee, K.R., Zhou, Z.L., Qian, W.J. & Kennedy, R. Detection and imaging of zinc secretion from pancreatic beta-cells using a new fluorescent zinc indicator. J. Am. Chem. Soc. 124, 776–778 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Qian, W.J., Aspinwall, C.A., Battiste, M.A. & Kennedy, R.T. Detection of secretion from single pancreatic beta-cells using extracellular fluorogenic reactions and confocal fluorescence microscopy. Anal. Chem. 72, 711–717 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Razavi, R. et al. TRPV1+ sensory neurons control beta cell stress and islet inflammation in autoimmune diabetes. Cell 127, 1123–1135 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Bandell, M., Macpherson, L.J. & Patapoutian, A. From chills to chilis: mechanisms for thermosensation and chemesthesis via thermoTRPs. Curr. Opin. Neurobiol. 17, 490–497 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, G., Strang, C., Pfaffinger, P.J. & Covarrubias, M. Zn2+-dependent redox switch in the intracellular T1–T1 interface of a Kv channel. J. Biol. Chem. 282, 13637–13647 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Dhaka, A. et al. TRPM8 is required for cold sensation in mice. Neuron 54, 371–378 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Bandell, M. et al. High-throughput random mutagenesis screen reveals TRPM8 residues specifically required for activation by menthol. Nat. Neurosci. 9, 493–500 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Petrus, M. et al. A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Mol. Pain 3, 40 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Mathur, T. Earley, J. Watson and M. Garrett for excellent technical support, T. Miyamoto (The Scripps Research Institute) and B. Xiao (The Scripps Research Institute) for supplying mutant TRPA1 constructs, and T. Jegla and members of the Patapoutian lab for helpful discussions. We thank D. Corey (Harvard Medical School) for the Trpa1−/− mice. We also thank the following individuals for generously sharing reagents: M. Caterina (Johns Hopkins University) for rat TRPV1 and N. Prevarskaya (Universite des Sciences et Technologies de Lille) for human TRPM8. This research was supported by the US National Institutes of Health and the Novartis Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ardem Patapoutian.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1 and 2 (PDF 955 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, H., Bandell, M., Petrus, M. et al. Zinc activates damage-sensing TRPA1 ion channels. Nat Chem Biol 5, 183–190 (2009). https://doi.org/10.1038/nchembio.146

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.146

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing