Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Monomeric fluorescent timers that change color from blue to red report on cellular trafficking

Abstract

Based on the mechanism for chromophore formation in red fluorescent proteins, we developed three mCherry-derived monomeric variants, called fluorescent timers (FTs), that change their fluorescence from the blue to red over time. These variants exhibit distinctive fast, medium and slow blue-to-red chromophore maturation rates that depend on the temperature. At 37 °C, the maxima of the blue fluorescence are observed at 0.25, 1.2 and 9.8 h for the purified fast-FT, medium-FT and slow-FT, respectively. The half-maxima of the red fluorescence are reached at 7.1, 3.9 and 28 h, respectively. The FTs show similar timing behavior in bacteria, insect and mammalian cells. Medium-FT allowed for tracking of the intracellular dynamics of the lysosome-associated membrane protein type 2A (LAMP-2A) and determination of its age in the targeted compartments. The results indicate that LAMP-2A transport through the plasma membrane and early or recycling endosomes to lysosomes is a major pathway for LAMP-2A trafficking.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural basis of the amino acid substitutions converting mCherry into the FTs.
Figure 2: Fluorescence properties of the purified FTs.
Figure 3: Behavior of the FTs in D. melanogaster S2 cells.
Figure 4: Behavior of the FTs and LAMP-2A–medium-FT fusion protein in mammalian cells.

Similar content being viewed by others

References

  1. Shaner, N.C., Patterson, G.H. & Davidson, M.W. Advances in fluorescent protein technology. J. Cell Sci. 120, 4247–4260 (2007).

    Article  CAS  Google Scholar 

  2. Miyawaki, A. & Karasawa, S. Memorizing spatiotemporal patterns. Nat. Chem. Biol. 3, 598–601 (2007).

    Article  CAS  Google Scholar 

  3. Terskikh, A. et al. “Fluorescent timer”: protein that changes color with time. Science 290, 1585–1588 (2000).

    Article  CAS  Google Scholar 

  4. Mirabella, R., Franken, C., van der Krogt, G.N., Bisseling, T. & Geurts, R. Use of the fluorescent timer DsRed-E5 as reporter to monitor dynamics of gene activity in plants. Plant Physiol. 135, 1879–1887 (2004).

    Article  CAS  Google Scholar 

  5. Duncan, R.R. et al. Functional and spatial segregation of secretory vesicle pools according to vesicle age. Nature 422, 176–180 (2003).

    Article  CAS  Google Scholar 

  6. Verkhusha, V.V., Chudakov, D.M., Gurskaya, N.G., Lukyanov, S. & Lukyanov, K.A. Common pathway for the red chromophore formation in fluorescent proteins and chromoproteins. Chem. Biol. 11, 845–854 (2004).

    Article  CAS  Google Scholar 

  7. Shaner, N.C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

    Article  CAS  Google Scholar 

  8. Eskelinen, E. et al. Role of LAMP-2 in lysosome biogenesis and autophagy. Mol. Biol. Cell 13, 3355–3368 (2002).

    Article  CAS  Google Scholar 

  9. Cuervo, A.M. & Dice, J.F. A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273, 501–503 (1996).

    Article  CAS  Google Scholar 

  10. Bonifacino, J.S. & Traub, L.M. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu. Rev. Biochem. 72, 395–447 (2003).

    Article  CAS  Google Scholar 

  11. Storrie, B. & Desjardins, M. The biogenesis of lysosomes: is it a kiss and run, continuous fusion and fission process? Bioessays 18, 895–903 (1996).

    Article  CAS  Google Scholar 

  12. Shu, X., Shaner, N.C., Yarbrough, C.A., Tsien, R.Y. & Remington, S.J. Novel chromophores and buried charges control color in mFruits. Biochemistry 45, 9639–9647 (2006).

    Article  CAS  Google Scholar 

  13. Bevis, B.J. & Glick, B.S. Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat. Biotechnol. 20, 83–87 (2002).

    Article  CAS  Google Scholar 

  14. Remington, S.J. Fluorescent proteins: maturation, photochemistry and photophysics. Curr. Opin. Struct. Biol. 16, 714–721 (2006).

    Article  CAS  Google Scholar 

  15. Strongin, D.E. et al. Structural rearrangements near the chromophore influence the maturation speed and brightness of DsRed variants. Protein Eng. Des. Sel. 20, 525–534 (2007).

    Article  CAS  Google Scholar 

  16. Yarbrough, D., Wachter, R.M., Kallio, K., Matz, M.V. & Remington, S.J. Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0-A resolution. Proc. Natl. Acad. Sci. USA 98, 462–467 (2001).

    Article  CAS  Google Scholar 

  17. Reid, B.G. & Flynn, G.C. Chromophore formation in green fluorescent protein. Biochemistry 36, 6786–6791 (1997).

    Article  CAS  Google Scholar 

  18. Zimmer, M. Green fluorescent protein (GFP): applications, structure, and related photophysical behavior. Chem. Rev. 102, 759–781 (2002).

    Article  CAS  Google Scholar 

  19. Bunch, T.A., Grinblat, Y. & Goldstein, L.S. Characterization and use of the Drosophila metallothionein promoter in cultured Drosophila melanogaster cells. Nucleic Acids Res. 16, 1043–1061 (1988).

    Article  CAS  Google Scholar 

  20. Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551 (1992).

    Article  CAS  Google Scholar 

  21. Verkhusha, V.V. et al. High stability of Discosoma DsRed as compared to Aequorea EGFP. Biochemistry 42, 7879–7884 (2003).

    Article  CAS  Google Scholar 

  22. Harter, C. & Mellman, I. Transport of the lysosomal membrane glycoprotein lgp120 (lgp-A) to lysosomes does not require appearance on the plasma membrane. J. Cell Biol. 117, 311–325 (1992).

    Article  CAS  Google Scholar 

  23. Hunziker, W. & Geuze, H.J. Intracellular trafficking of lysosomal membrane proteins. Bioessays 18, 379–389 (1996).

    Article  CAS  Google Scholar 

  24. Carlsson, S.R. & Fukuda, M. The lysosomal membrane glycoprotein lamp-1 is transported to lysosomes by two alternative pathways. Arch. Biochem. Biophys. 296, 630–639 (1992).

    Article  CAS  Google Scholar 

  25. Mathews, P.M., Martinie, J.B. & Fambrough, D.M. The pathway and targeting signal for delivery of the integral membrane glycoprotein LEP100 to lysosomes. J. Cell Biol. 118, 1027–1040 (1992).

    Article  CAS  Google Scholar 

  26. Akasaki, K., Michihara, A., Mibuka, K., Fujiwara, Y. & Tsuji, H. Biosynthetic transport of a major lysosomal membrane glycoprotein, lamp-1: convergence of biosynthetic and endocytic pathways occurs at three distinctive points. Exp. Cell Res. 220, 464–473 (1995).

    Article  CAS  Google Scholar 

  27. Gough, N.R. & Fambrough, D.M. Different steady state subcellular distributions of the three splice variants of lysosome-associated membrane protein LAMP-2 are determined largely by the COOH-terminal amino acid residue. J. Cell Biol. 137, 1161–1169 (1997).

    Article  CAS  Google Scholar 

  28. Shaper, N.L. et al. Bovine galactosyltransferase: identification of a clone by direct immunological screening of a cDNA expression library. Proc. Natl. Acad. Sci. USA 83, 1573–1577 (1986).

    Article  CAS  Google Scholar 

  29. Narimatsu, H., Sinha, S., Brew, K., Okayama, H. & Qasba, P.K. Cloning and sequencing of cDNA of bovine N-acetylglucosamine (beta 1–4)galactosyltransferase. Proc. Natl. Acad. Sci. USA 83, 4720–4724 (1986).

    Article  CAS  Google Scholar 

  30. Qasba, P.K., Ramakrishnan, B. & Boeggeman, E. Structure and function of beta -1,4-galactosyltransferase. Curr. Drug Targets 9, 292–309 (2008).

    Article  CAS  Google Scholar 

  31. Strous, G.J. Golgi and secreted galactosyltransferase. CRC Crit. Rev. Biochem. 21, 119–151 (1986).

    Article  CAS  Google Scholar 

  32. Teasdale, R.D., D'Agostaro, G. & Gleeson, P.A. The signal for Golgi retention of bovine beta 1,4-galactosyltransferase is in the transmembrane domain. J. Biol. Chem. 267, 4084–4096 (1992).

    CAS  PubMed  Google Scholar 

  33. Baird, G.S., Zacharias, D.A. & Tsien, R.Y. Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc. Natl. Acad. Sci. USA 97, 11984–11989 (2000).

    Article  CAS  Google Scholar 

  34. Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K. & Pease, L.R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59 (1989).

    Article  CAS  Google Scholar 

  35. Chudakov, D.M. et al. Photoswitchable cyan fluorescent protein for protein tracking. Nat. Biotechnol. 22, 1435–1439 (2004).

    Article  CAS  Google Scholar 

  36. Niwa, H. et al. Chemical nature of the light emitter of the Aequorea green fluorescent protein. Proc. Natl. Acad. Sci. USA 93, 13617–13622 (1996).

    Article  CAS  Google Scholar 

  37. Patterson, G.H., Knobel, S.M., Sharif, W.D., Kain, S.R. & Piston, D.W. Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys. J. 73, 2782–2790 (1997).

    Article  CAS  Google Scholar 

  38. Shaner, N.C., Steinbach, P.A. & Tsien, R.Y. A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909 (2005).

    Article  CAS  Google Scholar 

  39. Mendes, P. Biochemistry by numbers: simulation of biochemical pathways with Gepasi. Trends Biochem. Sci. 22, 361–363 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Zhang (Albert Einstein College of Medicine) for assistance with flow cytometry. We are grateful to R. Tsien (University of California at San Diego) for the complementary DNA of mCherry and D.Reeves (Albert Einstein College of Medicine) for the pcDNA-3.1-LAMP-2A-TSapphire-GFP vector. This work was supported by grants from the US National Institutes of Health (GM070358 and GM073913 to V.V.V. and AG021904 to A.M.C.).

Author information

Authors and Affiliations

Authors

Contributions

F.V.S. and I.S.G. developed the proteins. F.V.S., K.S.M. and K.D.P. characterized the proteins in vitro. O.M.S. and F.V.S. characterized the proteins in mammalian cells. V.V.V. designed and planned the project and, together with A.M.C., F.V.S. and O.M.S., wrote the manuscript.

Corresponding author

Correspondence to Vladislav V Verkhusha.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Tables 1 and 2, and Supplementary Methods (PDF 400 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subach, F., Subach, O., Gundorov, I. et al. Monomeric fluorescent timers that change color from blue to red report on cellular trafficking. Nat Chem Biol 5, 118–126 (2009). https://doi.org/10.1038/nchembio.138

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.138

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing