Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanism-based tuning of a LOV domain photoreceptor

Abstract

Phototropin-like LOV domains form a cysteinyl-flavin adduct in response to blue light but show considerable variation in output signal and the lifetime of the photo-adduct signaling state. Mechanistic studies of the slow-cycling fungal LOV photoreceptor Vivid (VVD) reveal the importance of reactive cysteine conformation, flavin electronic environment and solvent accessibility for adduct scission and thermal reversion. Proton inventory, pH effects, base catalysis and structural studies implicate flavin N5 deprotonation as rate-determining for recovery. Substitutions of active site residues Ile74, Ile85, Met135 and Met165 alter photoadduct lifetimes by over four orders of magnitude in VVD, and similar changes in other LOV proteins show analogous effects. Adduct state decay rates also correlate with changes in conformational and oligomeric properties of the protein necessary for signaling. These findings link natural sequence variation of LOV domains to function and provide a means to design broadly reactive light-sensitive probes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The VVD photosensor.
Figure 2: VVD kinetics.
Figure 3: LOV domain residue conservation.
Figure 4: Proton inventory and base catalysis.
Figure 5: Crystal structures of VVD variants.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Crosson, S., Rajagopal, S. & Moffat, K. The LOV domain family: photoresponsive signaling modules coupled to diverse output domains. Biochemistry 42, 2–10 (2003).

    Article  CAS  Google Scholar 

  2. Christie, J.M. Phototropin blue-light receptors. Annu. Rev. Plant Biol. 58, 21–45 (2007).

    Article  CAS  Google Scholar 

  3. Losi, A., Polverini, E., Quest, B. & Gartner, W. First evidence for phototropin-related blue-light receptors in prokaryotes. Biophys. J. 82, 2627–2634 (2002).

    Article  CAS  Google Scholar 

  4. Purcell, E.B., Siegal-Gaskins, D., Rawling, D.C., Fiebig, A. & Crosson, S. A photosensory two-component system regulates bacterial cell attachment. Proc. Natl. Acad. Sci. USA 104, 18241–18246 (2007).

    Article  CAS  Google Scholar 

  5. Schmoll, M., Franchi, L., Kubicek, C.P. & Envoy, A. PAS/LOV domain protein of Hypocrea jecorina (anamorph Trichoderma reesei), modulates cellulase gene transcription in response to light. Eukaryot. Cell 4, 1998–2007 (2005).

    Article  CAS  Google Scholar 

  6. Schwerdtfeger, C. & Linden, H. VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation. EMBO J. 22, 4846–4855 (2003).

    Article  CAS  Google Scholar 

  7. Swartz, T.E. et al. Blue-light-activated histidine kinases: two component sensors in bacteria. Science 317, 1090–1093 (2007).

    Article  CAS  Google Scholar 

  8. Zoltowski, B.D. et al. Conformational switching in the fungal light sensor vivid. Science 316, 1054–1057 (2007).

    Article  CAS  Google Scholar 

  9. Froehlich, A., Liu, Y., Loros, J.J. & Dunlap, J.C. White Collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science 297, 815–819 (2002).

    Article  CAS  Google Scholar 

  10. Moglich, A. & Moffat, K. Structural basis for light-dependent signalling in the dimeric LOV domain of the photosensor YtvA. J. Mol. Biol. 373, 112–126 (2007).

    Article  Google Scholar 

  11. Cao, Z., Buttani, V., Losi, A. & Gartner, W. A blue light inducible two-component signal transduction system in the plant pathogen Pseudomonas syringae pv. tomato. Biophys. J. 94, 897–905 (2008).

    Article  CAS  Google Scholar 

  12. Zikihara, K. et al. Photoreaction cycle of the light, oxygen and voltage domain in FKF1 determined by low-temperature absorption spectroscopy. Biochemistry 45, 10828–10837 (2006).

    Article  CAS  Google Scholar 

  13. Zoltowski, B.D. & Crane, B.R. Light activation of the LOV protein VVD generates a rapidly exchanging dimer. Biochemistry 47, 7012–7019 (2008).

    Article  CAS  Google Scholar 

  14. Nakasako, M., Kazunori, Z., Matsuoka, D., Katsura, H. & Tokutomi, S. Structural basis of the LOV1 dimerization of Arabidopsis phototropins 1 and 2. J. Mol. Biol. 381, 718–733 (2008).

    Article  CAS  Google Scholar 

  15. Nakasone, Y. et al. Stability of dimer and domain-domain interaction of Arabidopsis phototropin 1 LOV2. J. Mol. Biol. 383, 904–913 (2008).

    Article  CAS  Google Scholar 

  16. Corchnoy, S.B. et al. Intramolecular proton transfers and structural changes during the photocycle of the LOV2 domain of phototropin 1. J. Biol. Chem. 278, 724–731 (2003).

    Article  CAS  Google Scholar 

  17. Kennis, J.T.M. et al. Primary reactions of the LOV2 domain of photoropin, a plant blue-light photoreceptor. Biochemistry 42, 3385–3392 (2003).

    Article  CAS  Google Scholar 

  18. Swartz, T.E. et al. The photocycle of a flavin-binding domain of the blue light photoreceptor phototropin. J. Biol. Chem. 276, 36493–36500 (2001).

    Article  CAS  Google Scholar 

  19. Kottke, T., Heberle, J., Hehn, D., Dick, B. & Hegemann, P. Phot-LOV1: photocycle of a blue-light receptor domain from the green alga Chlamydomonas reinhardtii. Biophys. J. 84, 1192–1201 (2003).

    Article  CAS  Google Scholar 

  20. Alexandre, M.T.A. et al. Mechanism for dark state recovery in the Avena sativa phototropin-1 LOV2 domain. Biochemistry 46, 3129–3137 (2007).

    Article  CAS  Google Scholar 

  21. Christie, J.M. et al. Steric interactions stabilize the signaling state of the LOV2 domain of phototropin 1. Biochemistry 46, 9310–9319 (2007).

    Article  CAS  Google Scholar 

  22. Elvin, M., Loros, J.J., Dunlap, J.C. & Heintzen, C. The PAS/LOV protein VVD supports a rapidly dampened daytime oscillator that facilitates entrainment of the Neurospora circadian clock. Genes Dev. 19, 2593–2605 (2005).

    Article  CAS  Google Scholar 

  23. Heintzen, C., Loros, J.J., Dunlap, J.C. & The, P.A.S. Protein VIVID defines a Clock-associated feedback loop that represses light input, modulates gating, and regulates Clock resetting. Cell 104, 453–464 (2001).

    Article  CAS  Google Scholar 

  24. Shrode, L.B., Lewis, Z.A., White, L.D., Bell-Pedersen, D. & Ebbole, D.J. vvd is required for light adaptation of conidiation-specific genes of Neurospora crassa, but not circadian conidiation. Fungal Genet. Biol. 32, 169–181 (2001).

    Article  CAS  Google Scholar 

  25. Losi, A., Quest, B. & Gartner, W. Listening to the blue: the time resolved thermodynamics of the bacterial blue-light receptor YtvA and its isolated LOV domain. Photochem. Photobiol. Sci. 2, 759–766 (2003).

    Article  CAS  Google Scholar 

  26. Kennis, J.T.M. et al. The LOV2 domain of phototropin: a reversible photochromic switch. J. Am. Chem. Soc. 126, 4512–4513 (2004).

    Article  CAS  Google Scholar 

  27. Kasahara, M. et al. Photochemical properties of the flavin mononucleotide-binding domains of the photorropins from Arabidopsis, rice, and Chlamydomonas reinhardtii. Plant Physiol. 129, 762–773 (2002).

    Article  CAS  Google Scholar 

  28. Druhan, L.J. & Swenson, R.P. Role of methionine 56 in the control of the oxidation-reduction potentials of the Clostridium beijerinckii flavodoxin: effects of substitutions by aliphatic amino acids and evidence for a role of sulfur-flavin interactions. Biochemistry 37, 9668–9678 (1998).

    Article  CAS  Google Scholar 

  29. Alexandre, M.T., van Grondelle, R., Hellingwerf, K.J., Robert, B. & Kennis, J.T. Perturbation of the ground-state electronic structure of FMN by the conserved cysteine in phototropin LOV2 domains. Phys. Chem. Chem. Phys. 10, 6693–6702 (2008).

    Article  CAS  Google Scholar 

  30. Venkatasubban, K.S. & Schowen, R.L. The proton inventory technique. CRC Crit. Rev. Biochem. 17, 1–44 (1984).

    Article  CAS  Google Scholar 

  31. Fedorov, R. et al. Crystal structures and molecular mechanism of a light-induced signaling switch: the Phot-LOV1 domain from Chlamydomonas reinhardtii. Biophys. J. 84, 2474–2482 (2003).

    Article  CAS  Google Scholar 

  32. Sato, Y. et al. Heterogeneous environment of the S-H Group of Cys966 near the flavin chromophore in the LOV2 domain of Adiantum neochrome 1. Biochemistry 46, 10258–10265 (2007).

    Article  CAS  Google Scholar 

  33. Lamb, J.S. et al. Illuminating solution responses of a LOV-domain protein with photocoupled small angle X-ray scattering. J. Mol. Biol. (in the press).

  34. Yamamoto, A., Iwata, T., Tokutomi, S. & Kandori, H. Role of Phe1010 in light-induced structural changes of the neo1–LOV2 domain of Adiantum. Biochemistry 47, 922–928 (2008).

    Article  CAS  Google Scholar 

  35. Ishikita, H. Influence of the protein environment on the redox potentials of flavodoxins form Clostridium beijerinckii. J. Biol. Chem. 282, 25240–25246 (2007).

    Article  CAS  Google Scholar 

  36. Yagi, K., Ohishi, N., Nishimoto, K., Choi, J.D. & Song, P.S. Effect of hydrogen bonding on electronic spectra and reactivity of flavins. Biochemistry 19, 1553–1557 (1980).

    Article  CAS  Google Scholar 

  37. Fedorov, R. et al. Crystal structures and molecular mechanism of a light-induced signaling switch: the Phot-LOV1 domain from Chlamydomonas reinhardtii. Biophys. J. 84, 2474–2482 (2003).

    Article  CAS  Google Scholar 

  38. Iwata, T. et al. Light-induced structural changes in the LOV2 domain of Adiantum phytochrome3 studied by low-temperature FTIR and UV-visible spectroscopy. Biochemistry 42, 8183–8191 (2003).

    Article  CAS  Google Scholar 

  39. Iwata, T., Tokutomi, S. & Kandori, H. Photoreaction of the cysteine S-H group in the LOV2 domain of Adiantum phytochrome3. J. Am. Chem. Soc. 124, 11840–11841 (2002).

    Article  CAS  Google Scholar 

  40. Sato, Y., Iwata, T., Tokutomi, S. & Kandori, H. Reactive cysteine is protonated in the triplet excited state of the LOV2 domain in Adiantum phytochrome3. J. Am. Chem. Soc. 127, 1088–1089 (2005).

    Article  CAS  Google Scholar 

  41. Schleicher, E. et al. On the reaction mechanism of adduct formation in LOV domains of the plant blue-light receptor phototropin. J. Am. Chem. Soc. 126, 11067–11076 (2004).

    Article  CAS  Google Scholar 

  42. Dittrich, M., Freddolino, P.L. & Schulten, K. When light falls in LOV: a quantum mechanical/molecular mechanical study of photoexcitation in Phot-LOV1 of Chlamydomonas reinhardtii. J. Phys. Chem. B 109, 13006–13013 (2005).

    Article  CAS  Google Scholar 

  43. Domratcheva, T., Fedorov, R. & Schlichting, I. Analysis of the primary photocycle reactions occurring in the light, oxygen, and voltage blue-light receptor by multiconfigurational quantum-chemical methods. J. Chem. Theory Comput. 2, 1565–1574 (2006).

    Article  CAS  Google Scholar 

  44. Nash, A.I., Ko, W.H., Harper, S.M. & Gardner, K.H. A conserved glutamine plays a central role in LOV domain signal transmission and its duration. Biochemistry 47, 13842–13849 (2008).

    Article  CAS  Google Scholar 

  45. Yoshida, Y. & Hasunuma, K. Reactive oxygen species affect photomorphogenesis in Neurospora crassa. J. Biol. Chem. 279, 6986–6993 (2004).

    Article  CAS  Google Scholar 

  46. Strickland, D., Moffat, K. & Sosnick, T.R. Light activated DNA binding in a designed allosteric protein. Proc. Natl. Acad. Sci. USA 105, 10709–10714 (2008).

    Article  CAS  Google Scholar 

  47. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  48. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  49. McRee, D.E. XtalView: a visual protein crystallographic software system for X11/Xview. J. Mol. Graph. 10, 44–47 (1992).

    Article  Google Scholar 

  50. Brunger, A.T. et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Vaidya for help with kinetic studies, K. Gardner (University of Texas Southwestern) for supplying the AsLOV2 expression clone, J. Widom for help with mutagenesis and protein expression, and the Cornell High Energy Synchrotron for access to data collection facilities. This work was supported by US National Institutes of Health grant R01- GM079679.

Author information

Authors and Affiliations

Authors

Contributions

B.D.Z., B.V. and B.R.C. designed experiments; B.D.Z. and B.V. carried out experiments; B.D.Z., B.V. and B.R.C. analyzed data; B.D.Z. and B.R.C. wrote the manuscript.

Corresponding author

Correspondence to Brian R Crane.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1 and 2, and Supplementary Methods (PDF 2382 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zoltowski, B., Vaccaro, B. & Crane, B. Mechanism-based tuning of a LOV domain photoreceptor. Nat Chem Biol 5, 827–834 (2009). https://doi.org/10.1038/nchembio.210

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.210

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing