Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metal swap between Zn7-metallothionein-3 and amyloid-β–Cu protects against amyloid-β toxicity

Abstract

Aberrant interactions of copper and zinc ions with the amyloid-β peptide (Aβ) potentiate Alzheimer's disease (AD) by participating in the aggregation process of Aβ and in the generation of reactive oxygen species (ROS). The ROS production and the neurotoxicity of Aβ are associated with copper binding. Metallothionein-3 (Zn7MT-3), an intra- and extracellularly occurring metalloprotein, is highly expressed in the brain and downregulated in AD. This protein protects, by an unknown mechanism, cultured neurons from the toxicity of Aβ. Here, we show that a metal swap between Zn7MT-3 and soluble and aggregated Aβ1–40–Cu(II) abolishes the ROS production and the related cellular toxicity. In this process, copper is reduced by the protein thiolates forming Cu(I)4Zn4MT-3, in which an air-stable Cu(I)4-thiolate cluster and two disulfide bonds are present. The discovered protective effect of Zn7MT-3 from the copper-mediated Aβ1–40 toxicity may lead to new therapeutic strategies for treating AD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Absorption and CD spectroscopy of the metal swap between soluble Aβ1−40–Cu(II) and Zn7MT-3.
Figure 2: Metal swap between insoluble aggregated Aβ1−40–Cu(II) and Zn7MT-3.
Figure 3: Effect of Zn7MT-3 on the nature of aggregated Aβ1−40–Cu(II) and on the hydroxyl radical production from soluble and aggregated Aβ1−40–Cu(II).
Figure 4: Effect of Aβ1−40–Cu(II) and Zn7MT-3 on the survival of SH-SY5Y neuroblastoma cells.

Similar content being viewed by others

References

  1. Adlard, P.A. & Bush, A.I. Metals and Alzheimer's disease. J. Alzheimers Dis. 10, 145–163 (2006).

    Article  Google Scholar 

  2. Bush, A.I. et al. Rapid induction of Alzheimer Aβ amyloid formation by zinc. Science 265, 1464–1467 (1994).

    Article  CAS  Google Scholar 

  3. Huang, X. et al. Cu(II) potentiation of alzheimer Aβ neurotoxicity. Correlation with cell–free hydrogen peroxide production and metal reduction. J. Biol. Chem. 274, 37111–37116 (1999).

    Article  CAS  Google Scholar 

  4. Cuajungco, M.P. et al. Evidence that the β–amyloid plaques of Alzheimer's disease represent the redox–silencing and entombment of Aβ by zinc. J. Biol. Chem. 275, 19439–19442 (2000).

    Article  CAS  Google Scholar 

  5. Dikalov, S.I., Vitek, M.P. & Mason, R.P. Cupric–amyloid β peptide complex stimulates oxidation of ascorbate and generation of hydroxyl radical. Free Radic. Biol. Med. 36, 340–347 (2004).

    Article  CAS  Google Scholar 

  6. Opazo, C. et al. Metalloenzyme-like activity of Alzheimer's disease β–amyloid. Cu-dependent catalytic conversion of dopamine, cholesterol, and biological reducing agents to neurotoxic H2O2 . J. Biol. Chem. 277, 40302–40308 (2002).

    Article  CAS  Google Scholar 

  7. Doraiswamy, P.M. & Finefrock, A.E. Metals in our minds: therapeutic implications for neurodegenerative disorders. Lancet Neurol. 3, 431–434 (2004).

    Article  CAS  Google Scholar 

  8. Vašák, M. & Hasler, D.W. Metallothioneins: new functional and structural insights. Curr. Opin. Chem. Biol. 4, 177–183 (2000).

    Article  Google Scholar 

  9. Uchida, Y., Takio, K., Titani, K., Ihara, Y. & Tomonaga, M. The growth inhibitory factor that is deficient in the Alzheimer's disease brain is a 68 amino acid metallothionein-like protein. Neuron 7, 337–347 (1991).

    Article  CAS  Google Scholar 

  10. Öz, G., Zangger, K. & Armitage, I.M. Three-dimensional structure and dynamics of a brain specific growth inhibitory factor: metallothionein–3. Biochemistry 40, 11433–11441 (2001).

    Article  Google Scholar 

  11. Faller, P. et al. Evidence for a dynamic structure of human neuronal growth inhibitory factor and for major rearrangements of its metal–thiolate clusters. Biochemistry 38, 10158–10167 (1999).

    Article  CAS  Google Scholar 

  12. Wang, H. et al. Solution structure and dynamics of human metallothionein–3 (MT–3). FEBS Lett. 580, 795–800 (2006).

    Article  CAS  Google Scholar 

  13. Uchida, Y., Gomi, F., Masumizu, T. & Miura, Y. Growth inhibitory factor prevents neurite extension and death of cortical neurons caused by high oxygen exposure through hydroxyl radical scavenging. J. Biol. Chem. 277, 32353–32359 (2002).

    Article  CAS  Google Scholar 

  14. Yu, W.H., Lukiw, W.J., Bergeron, C., Niznik, H.B. & Fraser, P.E. Metallothionein III is reduced in Alzheimer's disease. Brain Res. 894, 37–45 (2001).

    Article  CAS  Google Scholar 

  15. Irie, Y. & Keung, W.M. Metallothionein–III antagonizes the neurotoxic and neurotrophic effects of amyloid β peptides. Biochem. Biophys. Res. Commun. 282, 416–420 (2001).

    Article  CAS  Google Scholar 

  16. Meloni, G., Faller, P. & Vašák, M. Redox silencing of copper in metal-linked neurodegenerative disorders: reaction of Zn7 metallothionein–3 with Cu2+ ions. J. Biol. Chem. 282, 16068–16078 (2007).

    Article  CAS  Google Scholar 

  17. Hou, L. & Zagorski, M.G. NMR reveals anomalous copper(II) binding to the amyloid Aβ peptide of Alzheimer's disease. J. Am. Chem. Soc. 128, 9260–9261 (2006).

    Article  CAS  Google Scholar 

  18. Syme, C.D., Nadal, R.C., Rigby, S.E. & Viles, J.H. Copper binding to the amyloid–beta (Aβ) peptide associated with Alzheimer's disease: folding, coordination geometry, pH dependence, stoichiometry, and affinity of Aβ–(1–28): insights from a range of complementary spectroscopic techniques. J. Biol. Chem. 279, 18169–18177 (2004).

    Article  CAS  Google Scholar 

  19. Guilloreau, L. et al. Structural and thermodynamical properties of CuII amyloid–beta16/28 complexes associated with Alzheimer's disease. J. Biol. Inorg. Chem. 11, 1024–1038 (2006).

    Article  CAS  Google Scholar 

  20. Fawcett, T.G., Bernarducci, E.E., Kroghjespersen, K. & Schugar, H.J. Charge–transfer absorptions of Cu(II)–imidazole and Cu(II)–imidazolate chromophores. J. Am. Chem. Soc. 102, 2598–2604 (1980).

    Article  CAS  Google Scholar 

  21. Pountney, D.L., Schauwecker, I., Zarn, J. & Vašák, M. Formation of mammalian Cu8–metallothionein in vitro: evidence for the existence of two Cu(I)4–thiolate clusters. Biochemistry 33, 9699–9705 (1994).

    Article  CAS  Google Scholar 

  22. Tycko, R. Molecular structure of amyloid fibrils: insights from solid-state NMR. Q. Rev. Biophys. 39, 1–55 (2006).

    Article  CAS  Google Scholar 

  23. House, E. et al. Aluminium, iron, zinc and copper influence the in vitro formation of amyloid fibrils of Aβ42 in a manner which may have consequences for metal chelation therapy in Alzheimer's disease. J. Alzheimers Dis. 6, 291–301 (2004).

    Article  CAS  Google Scholar 

  24. Karr, J.W., Kaupp, L.J. & Szalai, V.A. Amyloid–beta binds Cu2+ in a mononuclear metal ion binding site. J. Am. Chem. Soc. 126, 13534–13538 (2004).

    Article  CAS  Google Scholar 

  25. Atwood, C.S. et al. Dramatic aggregation of Alzheimer Aβ by Cu(II) is induced by conditions representing physiological acidosis. J. Biol. Chem. 273, 12817–12826 (1998).

    Article  CAS  Google Scholar 

  26. Dong, J. et al. Metal binding and oxidation of amyloid–β within isolated senile plaque cores: Raman microscopic evidence. Biochemistry 42, 2768–2773 (2003).

    Article  CAS  Google Scholar 

  27. Talmard, C., Guilloreau, L., Coppel, Y., Mazarguil, H. & Faller, P. Amyloid–beta peptide forms monomeric complexes with CuII and ZnII prior to aggregation. ChemBioChem 8, 163–165 (2007).

    Article  CAS  Google Scholar 

  28. Mekmouche, Y. et al. Characterization of the ZnII binding to the peptide amyloid–β1–16 linked to Alzheimer's disease. ChemBioChem 6, 1663–1671 (2005).

    Article  CAS  Google Scholar 

  29. Hardy, J. & Selkoe, D.J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    Article  CAS  Google Scholar 

  30. Smith, D.P. et al. Copper-mediated amyloid–β toxicity is associated with an intermolecular histidine bridge. J. Biol. Chem. 281, 15145–15154 (2006).

    Article  CAS  Google Scholar 

  31. Atwood, C.S. et al. Copper mediates dityrosine cross-linking of Alzheimer's amyloid–beta. Biochemistry 43, 560–568 (2004).

    Article  CAS  Google Scholar 

  32. Smith, D.P. et al. Concentration dependent Cu2+ induced aggregation and dityrosine formation of the Alzheimer's disease amyloid–beta peptide. Biochemistry 46, 2881–2891 (2007).

    Article  CAS  Google Scholar 

  33. Bush, A.I., Moir, R.D., Rosenkranz, K.M. & Tanzi, R.E. Response. Science 268, 1921–1923 (1995).

    Article  CAS  Google Scholar 

  34. Cardoso, S.M., Rego, A.C., Pereira, C. & Oliveira, C.R. Protective effect of zinc on amyloid–β 25–35 and 1–40 mediated toxicity. Neurotox. Res. 7, 273–281 (2005).

    Article  CAS  Google Scholar 

  35. Butterfield, D.A., Drake, J., Pocernich, C. & Castegna, A. Evidence of oxidative damage in Alzheimer's disease brain: central role for amyloid β–peptide. Trends Mol. Med. 7, 548–554 (2001).

    Article  CAS  Google Scholar 

  36. Rice, M.E. Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci. 23, 209–216 (2000).

    Article  CAS  Google Scholar 

  37. Bush, A.I., Pettingell, W.H., Jr., Paradis, M.D. & Tanzi, R.E. Modulation of Aβ adhesiveness and secretase site cleavage by zinc. J. Biol. Chem. 269, 12152–12158 (1994).

    CAS  PubMed  Google Scholar 

  38. Atwood, C.S. et al. Characterization of copper interactions with alzheimer amyloid β peptides: identification of an attomolar–affinity copper binding site on amyloid β 1–42. J. Neurochem. 75, 1219–1233 (2000).

    Article  CAS  Google Scholar 

  39. Hasler, D.W., Jensen, L.T., Zerbe, O., Winge, D.R. & Vašák, M. Effect of the two conserved prolines of human growth inhibitory factor (metallothionein–3) on its biological activity and structure fluctuation: comparison with a mutant protein. Biochemistry 39, 14567–14575 (2000).

    Article  CAS  Google Scholar 

  40. Hamer, D.H. Metallothionein. Annu. Rev. Biochem. 55, 913–951 (1986).

    Article  CAS  Google Scholar 

  41. Belle, C., Rammal, W. & Pierre, J.L. Sulfur ligation in copper enzymes and models. J. Inorg. Biochem. 99, 1929–1936 (2005).

    Article  CAS  Google Scholar 

  42. Ohta, T. et al. Synthesis, structure, and H2O2–dependent catalytic functions of disulfide–bridged dicopper(I) and related thioether–copper(I) and thioether–copper(II) complexes. Inorg. Chem. 39, 4358–4369 (2000).

    Article  CAS  Google Scholar 

  43. Smith, D.G., Cappai, R. & Barnham, K.J. The redox chemistry of the Alzheimer's disease amyloid β peptide. Biochim. Biophys. Acta 1768, 1976–1990 (2007).

    Article  CAS  Google Scholar 

  44. Yoshiike, Y. et al. New insights on how metals disrupt amyloid β–aggregation and their effects on amyloid–β cytotoxicity. J. Biol. Chem. 276, 32293–32299 (2001).

    Article  CAS  Google Scholar 

  45. Zou, K., Gong, J.S., Yanagisawa, K. & Michikawa, M. A novel function of monomeric amyloid β–protein serving as an antioxidant molecule against metal–induced oxidative damage. J. Neurosci. 22, 4833–4841 (2002).

    Article  CAS  Google Scholar 

  46. Kontush, A. Amyloid–β: an antioxidant that becomes a pro–oxidant and critically contributes to Alzheimer's disease. Free Radic. Biol. Med. 31, 1120–1131 (2001).

    Article  CAS  Google Scholar 

  47. Hou, L. et al. Solution NMR studies of the Aβ(1–40) and Aβ(1–42) peptides establish that the Met35 oxidation state affects the mechanism of amyloid formation. J. Am. Chem. Soc. 126, 1992–2005 (2004).

    Article  CAS  Google Scholar 

  48. Manevich, Y., Held, K.D. & Biaglow, J.E. Coumarin–3–carboxylic acid as a detector for hydroxyl radicals generated chemically and by gamma radiation. Radiat. Res. 148, 580–591 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Action-Concertée-Integrée INTERFACE Physique-Chimie-Biologie (P.F.), Swiss National Science Foundation grant 3100A0–100246/1 (M.V.), Programme d'Actions Intégrées Germaine de Staël grants 08345VK (M.V. and P.F.) and the Hartmann Müller-Stiftung (M.V.). We thank A. Mari and L. Rechignat for EPR measurements, D. Lavabre for preliminary luminescence experiments and E. Bellard and M. Fix for help in cell viability experiments. We also thank S. Chesnov for recording nano-ESI-MS spectra.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter Faller or Milan Vašák.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Tables 1 and 2, and Supplementary Methods (PDF 486 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meloni, G., Sonois, V., Delaine, T. et al. Metal swap between Zn7-metallothionein-3 and amyloid-β–Cu protects against amyloid-β toxicity. Nat Chem Biol 4, 366–372 (2008). https://doi.org/10.1038/nchembio.89

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.89

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing