Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Site selectivity of platinum anticancer therapeutics

This article has been updated

Abstract

X-ray crystallographic and biochemical investigation of the reaction of cisplatin and oxaliplatin with nucleosome core particle and naked DNA reveals that histone octamer association can modulate DNA platination. Adduct formation also occurs at specific histone methionine residues, which could serve as a nuclear platinum reservoir influencing adduct transfer to DNA. Our findings suggest that the nucleosome center may provide a favorable target for the design of improved platinum anticancer drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: X-ray crystallographic analysis revealing DNA and histone platinum adduct positions in the NCP.
Figure 2: Exonuclease footprinting analysis revealing drug-specific differences in platination site selectivity between naked and nucleosomal DNA.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

Change history

  • 03 January 2008

    dash marks added back into Fig 2a

References

  1. Jung, Y. & Lippard, S.J. Chem. Rev. 107, 1387–1407 (2007).

    Article  CAS  Google Scholar 

  2. Segal, E. et al. Nature 442, 772–778 (2006).

    Article  CAS  Google Scholar 

  3. Galea, A.M. & Murray, V. Biochim. Biophys. Acta 1579, 142–152 (2002).

    Article  CAS  Google Scholar 

  4. Wang, D., Hara, R., Singh, G., Sancar, A. & Lippard, S.J. Biochemistry 42, 6747–6753 (2003).

    Article  CAS  Google Scholar 

  5. Richmond, T.J. & Davey, C.A. Nature 423, 145–150 (2003).

    Article  CAS  Google Scholar 

  6. Ong, M.S., Richmond, T.J. & Davey, C.A. J. Mol. Biol. 368, 1067–1074 (2007).

    Article  CAS  Google Scholar 

  7. Davey, C.A. & Richmond, T.J. Proc. Natl. Acad. Sci. USA 99, 11169–11174 (2002).

    Article  CAS  Google Scholar 

  8. Royer-Pokora, B., Gordon, L.K. & Haseltine, W.A. Nucleic Acids Res. 9, 4595–4609 (1981).

    Article  CAS  Google Scholar 

  9. Trzupek, J.D., Gottesfeld, J.M. & Boger, D.L. Nat. Chem. Biol. 2, 79–82 (2006).

    Article  CAS  Google Scholar 

  10. Subramanian, V., Ducept, P., Williams, R.M. & Luger, K. Chem. Biol. 14, 553–563 (2007).

    Article  CAS  Google Scholar 

  11. Li, G., Levitus, M., Bustamante, C. & Widom, J. Nat. Struct. Mol. Biol. 12, 46–53 (2005).

    Article  CAS  Google Scholar 

  12. Davey, C.A., Sargent, D.F., Luger, K., Maeder, A.W. & Richmond, T.J. J. Mol. Biol. 319, 1097–1113 (2002).

    Article  CAS  Google Scholar 

  13. Murray, V. et al. J. Biol. Chem. 267, 18805–18809 (1992).

    CAS  PubMed  Google Scholar 

  14. Woynarowski, J.M., Chapman, W.G., Napier, C., Herzig, M.C. & Juniewicz, P. Mol. Pharmacol. 54, 770–777 (1998).

    Article  CAS  Google Scholar 

  15. Reedijk, J. Proc. Natl. Acad. Sci. USA 100, 3611–3616 (2003).

    Article  CAS  Google Scholar 

  16. Barnham, K.J., Djuran, M.I., Murdoch, P.D., Ranford, J.D. & Sadler, P.J. J. Chem. Soc. Dalton Trans. 22, 3721–3726 (1995).

    Article  Google Scholar 

  17. Spingler, B., Whittington, D.A. & Lippard, S.J. Inorg. Chem. 40, 5596–5602 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.A.D. dedicates this work to the memory of Lois Joan Varallo. Thanks to D. Vasudevan, K.A. Mohideen, C. Schulze-Briese and staff at the X06SA beam line of the Swiss Light Source for assistance with data collection. C.A.D. is very grateful to G.E. Davey for input on the manuscript and unreserved support. This work was supported by a Nanyang Technological University grant and an Academic Research Council grant from the Ministry of Education, Singapore.

Author information

Authors and Affiliations

Authors

Contributions

B.W. planned and performed experiments; P.D. provided expertise for footprinting analysis and input on the manuscript; C.A.D. designed research, conducted analysis and wrote the manuscript.

Corresponding author

Correspondence to Curt A Davey.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Tables 1–3 and Supplementary Methods (PDF 677 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, B., Dröge, P. & Davey, C. Site selectivity of platinum anticancer therapeutics. Nat Chem Biol 4, 110–112 (2008). https://doi.org/10.1038/nchembio.2007.58

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2007.58

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing