Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular basis of cyclin-CDK-CKI regulation by reversible binding of an inositol pyrophosphate

Abstract

When Saccharomyces cerevisiae cells are starved of inorganic phosphate, the Pho80-Pho85 cyclin–cyclin-dependent kinase (CDK) is inactivated by the Pho81 CDK inhibitor (CKI). The regulation of Pho80-Pho85 is distinct from previously characterized mechanisms of CDK regulation: the Pho81 CKI is constitutively associated with Pho80-Pho85, and a small-molecule ligand, inositol heptakisphosphate (IP7), is required for kinase inactivation. We investigated the molecular basis of the IP7- and Pho81-dependent Pho80-Pho85 inactivation using electrophoretic mobility shift assays, enzyme kinetics and fluorescence spectroscopy. We found that IP7 interacts noncovalently with Pho80-Pho85-Pho81 and induces additional interactions between Pho81 and Pho80-Pho85 that prevent substrates from accessing the kinase active site. Using synthetic peptides corresponding to Pho81, we define regions of Pho81 responsible for constitutive Pho80-Pho85 binding and IP7-regulated interaction and inhibition. These findings expand our understanding of the mechanisms of cyclin-CDK regulation and of the biochemical mechanisms of IP7 action.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reversible regulation of Pho80-Pho85-Pho81-MD by IP7.
Figure 2: Characterization of IP7 binding to Pho80-Pho85-Pho81-MD.
Figure 3: Enzyme kinetic analysis of IP7-mediated Pho80-Pho85-Pho81-MD inactivation.
Figure 4: Additional interaction between Pho81-MD and Pho80-Pho85.
Figure 5: Dissection of Pho81-MD into binding and inhibitory segments.
Figure 6: Model of Pho80-Pho85 regulation by 4/6-IP7 and Pho81.

Similar content being viewed by others

References

  1. Lindsley, J.E. & Rutter, J. Nutrient sensing and metabolic decisions. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 139, 543–559 (2004).

    Article  Google Scholar 

  2. Wilson, W.A. & Roach, P.J. Nutrient-regulated protein kinases in budding yeast. Cell 111, 155–158 (2002).

    Article  CAS  Google Scholar 

  3. Lenburg, M.E. & O'Shea, E.K. Signaling phosphate starvation. Trends Biochem. Sci. 21, 383–387 (1996).

    Article  CAS  Google Scholar 

  4. Schneider, K.R., Smith, R.L. & O'Shea, E.K. Phosphate-regulated inactivation of the kinase PHO80–PHO85 by the CDK inhibitor PHO81. Science 266, 122–126 (1994).

    Article  CAS  Google Scholar 

  5. Kaffman, A., Herskowitz, I., Tjian, R. & O'Shea, E.K. Phosphorylation of the transcription factor PHO4 by a cyclin-CDK complex, PHO80–PHO85. Science 263, 1153–1156 (1994).

    Article  CAS  Google Scholar 

  6. O'Neill, E.M., Kaffman, A., Jolly, E.R. & O'Shea, E.K. Regulation of PHO4 nuclear localization by the PHO80–PHO85 cyclin-CDK complex. Science 271, 209–212 (1996).

    Article  CAS  Google Scholar 

  7. Komeili, A. & O'Shea, E.K. Nuclear transport and transcription. Curr. Opin. Cell Biol. 12, 355–360 (2000).

    Article  CAS  Google Scholar 

  8. Springer, M., Wykoff, D.D., Miller, N. & O'Shea, E.K. Partially phosphorylated Pho4 activates transcription of a subset of phosphate-responsive genes. PLoS Biol. 1, E28 (2003).

    Article  Google Scholar 

  9. Pavletich, N.P. Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J. Mol. Biol. 287, 821–828 (1999).

    Article  CAS  Google Scholar 

  10. Lee, Y.S., Mulugu, S., York, J.D. & O'Shea, E.K. Regulation of a cyclin-CDK-CDK inhibitor complex by inositol pyrophosphates. Science 316, 109–112 (2007).

    Article  CAS  Google Scholar 

  11. Irvine, R.F. & Schell, M.J. Back in the water: the return of the inositol phosphates. Nat. Rev. Mol. Cell Biol. 2, 327–338 (2001).

    Article  CAS  Google Scholar 

  12. Bhandari, R., Chakraborty, A. & Snyder, S.H. Inositol pyrophosphate pyrotechnics. Cell Metab. 5, 321–323 (2007).

    Article  CAS  Google Scholar 

  13. Falck, J. et al. Synthesis and structure of cellular mediators: inositol polyphosphate diphosphates. J. Am. Chem. Soc. 117, 12172–12175 (1995).

    Article  CAS  Google Scholar 

  14. Mulugu, S. et al. A conserved family of enzymes that phosphorylate inositol hexakisphosphate. Science 316, 106–109 (2007).

    Article  CAS  Google Scholar 

  15. Luo, H.R. et al. Inositol pyrophosphates are required for DNA hyperrecombination in protein kinase c1 mutant yeast. Biochemistry 41, 2509–2515 (2002).

    Article  CAS  Google Scholar 

  16. Dubois, E. et al. In Saccharomyces cerevisiae, the inositol polyphosphate kinase activity of Kcs1p is required for resistance to salt stress, cell wall integrity, and vacuolar morphogenesis. J. Biol. Chem. 277, 23755–23763 (2002).

    Article  CAS  Google Scholar 

  17. Ye, W., Ali, N., Bembenek, M.E., Shears, S.B. & Lafer, E.M. Inhibition of clathrin assembly by high affinity binding of specific inositol polyphosphates to the synapse-specific clathrin assembly protein AP-3. J. Biol. Chem. 270, 1564–1568 (1995).

    Article  CAS  Google Scholar 

  18. Fleischer, B. et al. Golgi coatomer binds, and forms K(+)-selective channels gated by, inositol polyphosphates. J. Biol. Chem. 269, 17826–17832 (1994).

    CAS  PubMed  Google Scholar 

  19. Saiardi, A., Resnick, A.C., Snowman, A.M., Wendland, B. & Snyder, S.H. Inositol pyrophosphates regulate cell death and telomere length through phosphoinositide 3-kinase-related protein kinases. Proc. Natl. Acad. Sci. USA 102, 1911–1914 (2005).

    Article  CAS  Google Scholar 

  20. York, S.J., Armbruster, B.N., Greenwell, P., Petes, T.D. & York, J.D. Inositol diphosphate signaling regulates telomere length. J. Biol. Chem. 280, 4264–4269 (2005).

    Article  CAS  Google Scholar 

  21. Luo, H.R. et al. Inositol pyrophosphates mediate chemotaxis in Dictyostelium via pleckstrin homology domain-PtdIns(3,4,5)P3 interactions. Cell 114, 559–572 (2003).

    Article  CAS  Google Scholar 

  22. Saiardi, A., Bhandari, R., Resnick, A.C., Snowman, A.M. & Snyder, S.H. Phosphorylation of proteins by inositol pyrophosphates. Science 306, 2101–2105 (2004).

    Article  CAS  Google Scholar 

  23. Bhandari, R. et al. Protein pyrophosphorylation by inositol pyrophosphates is a posttranslational event. Proc. Natl. Acad. Sci. USA 104, 15305–15310 (2007).

    Article  CAS  Google Scholar 

  24. Saiardi, A., Erdjument-Bromage, H., Snowman, A.M., Tempst, P. & Snyder, S.H. Synthesis of diphosphoinositol pentakisphosphate by a newly identified family of higher inositol polyphosphate kinases. Curr. Biol. 9, 1323–1326 (1999).

    Article  CAS  Google Scholar 

  25. Huang, S., Jeffery, D.A., Anthony, M.D. & O'Shea, E.K. Functional analysis of the cyclin-dependent kinase inhibitor Pho81 identifies a novel inhibitory domain. Mol. Cell. Biol. 21, 6695–6705 (2001).

    Article  CAS  Google Scholar 

  26. Marangoni, A.G. Enzyme Kinetics: a Modern Approach 70–78 (John Wiley & Sons, Hoboken, New Jersey, USA, 2002).

    Book  Google Scholar 

  27. Albert, C. et al. Biological variability in the structures of diphosphoinositol polyphosphates in Dictyostelium discoideum and mammalian cells. Biochem. J. 327, 553–560 (1997).

    Article  CAS  Google Scholar 

  28. Jeffery, D.A., Springer, M., King, D.S. & O'Shea, E.K. Multi-site phosphorylation of Pho4 by the cyclin-CDK Pho80-Pho85 is semi-processive with site preference. J. Mol. Biol. 306, 997–1010 (2001).

    Article  CAS  Google Scholar 

  29. Byrne, M., Miller, N., Springer, M. & O'Shea, E.K. A distal, high-affinity binding site on the cyclin-CDK substrate Pho4 is important for its phosphorylation and regulation. J. Mol. Biol. 335, 57–70 (2004).

    Article  CAS  Google Scholar 

  30. Jayaraman, P.S., Hirst, K. & Goding, C.R. The activation domain of a basic helix-loop-helix protein is masked by repressor interaction with domains distinct from that required for transcription regulation. EMBO J. 13, 2192–2199 (1994).

    Article  CAS  Google Scholar 

  31. Ogawa, N. et al. Promoter analysis of the PHO81 gene encoding a 134 kDa protein bearing ankyrin repeats in the phosphatase regulon of Saccharomyces cerevisiae. Mol. Gen. Genet. 238, 444–454 (1993).

    Article  CAS  Google Scholar 

  32. Ogawa, N. et al. Functional domains of Pho81p, an inhibitor of Pho85p protein kinase, in the transduction pathway of Pi signals in Saccharomyces cerevisiae. Mol. Cell. Biol. 15, 997–1004 (1995).

    Article  CAS  Google Scholar 

  33. Voglmaier, S.M. et al. Purified inositol hexakisphosphate kinase is an ATP synthase: diphosphoinositol pentakisphosphate as a high-energy phosphate donor. Proc. Natl. Acad. Sci. USA 93, 4305–4310 (1996).

    Article  CAS  Google Scholar 

  34. Russo, A.A., Jeffrey, P.D., Patten, A.K., Massague, J. & Pavletich, N.P. Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex. Nature 382, 325–331 (1996).

    Article  CAS  Google Scholar 

  35. Carroll, A.S. & O'Shea, E.K. Pho85 and signaling environmental conditions. Trends Biochem. Sci. 27, 87–93 (2002).

    Article  CAS  Google Scholar 

  36. Fersht, A. Enzyme Structure and Mechanism 2nd edn, 107–109 (Freeman, New York, 1984).

    Google Scholar 

Download references

Acknowledgements

We thank J. York (Duke University Medical School) for plasmids encoding Vip1 and hIP6K, I. Carter-O'Connell for protein preparation, O'Shea lab members for helpful discussions and comments on the manuscript, and D. Kahne (Harvard University) for access to equipment. This work was supported by the Helen Hay Whitney Foundation (Y.S.L.), Welch Foundation grant Q0581 (F.A.Q), US National Institutes of Health grant R01 GM051377, the David and Lucile Packard Foundation and the Howard Hughes Medical Institute (E.K.O.).

Author information

Authors and Affiliations

Authors

Contributions

Y.-S.L. and E.K.O. designed experiments, Y.-S.L. carried out experiments, Y.-S.L. and E.K.O. interpreted data and wrote the manuscript. K.H. and F.A.Q. designed Pho81 peptides and carried out preliminary experiments to study Pho80-Pho85 binding.

Corresponding author

Correspondence to Erin K O'Shea.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Methods (PDF 214 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, YS., Huang, K., Quiocho, F. et al. Molecular basis of cyclin-CDK-CKI regulation by reversible binding of an inositol pyrophosphate. Nat Chem Biol 4, 25–32 (2008). https://doi.org/10.1038/nchembio.2007.52

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2007.52

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing