Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Production and engineering of terpenoids in plant cell culture

Abstract

Terpenoids are a diverse class of natural products that have many functions in the plant kingdom and in human health and nutrition. Their chemical diversity has led to the discovery of over 40,000 different structures, with several classes serving as important pharmaceutical agents, including the anticancer agents paclitaxel (Taxol) and terpenoid-derived indole alkaloids. Many terpenoid compounds are found in low yield from natural sources, so plant cell cultures have been investigated as an alternate production strategy. Metabolic engineering of whole plants and plant cell cultures is an effective tool to both increase terpenoid yield and alter terpenoid distribution for desired properties such as enhanced flavor, fragrance or color. Recent advances in defining terpenoid metabolic pathways, particularly in secondary metabolism, enhanced knowledge concerning regulation of terpenoid accumulation, and application of emerging plant systems biology approaches, have enabled metabolic engineering of terpenoid production. This paper reviews the current state of knowledge of terpenoid metabolism, with a special focus on production of important pharmaceutically active secondary metabolic terpenoids in plant cell cultures. Strategies for defining pathways and uncovering rate-influencing steps in global metabolism, and applying this information for successful terpenoid metabolic engineering, are emphasized.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Overview of plant cellular metabolism for plastid-derived secondary metabolites such as paclitaxel in plant cell culture.

Similar content being viewed by others

References

  1. Rohdich, F., Bacher, A. & Eisenreich, W. Isoprenoid biosynthetic pathways as anti-infective drug targets. Biochem. Soc. Trans. 33, 785–791 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Withers, S.T. & Keasling, J.D. Biosynthesis and engineering of isoprenoid small molecules. Appl. Microbiol. Biotechnol. 73, 980–990 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Cragg, G.M. & Newman, D.J. Plants as a source of anti-cancer and anti-HIV agents. Ann. Appl. Biol. 143, 127–133 (2003).

    Article  CAS  Google Scholar 

  4. Cragg, G.M. & Newman, D.J. Plants as a source of anti-cancer agents. J. Ethnopharmacol. 100, 72–79 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Srivastava, V., Negi, A.S., Kumar, J.K., Gupta, M.M. & Khanuja, S.P.S. Plant-based anticancer molecules: a chemical and biological profile of some important leads. Bioorg. Med. Chem. 13, 5892–5908 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Eisenreich, W., Rohdich, F. & Bacher, A. Deoxyxyluose phosphate pathway to terpenoids. Trends Plant Sci. 6, 78–84 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Rodriguez-Concepcion, M. & Boronat, A. Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol. 130, 1079–1089 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Rohmer, M. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat. Prod. Rep. 16, 565–574 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Bick, J.A. & Lange, B.M. Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: unidirectional transport of intermediates across the chloroplast envelope membrane. Arch. Biochem. Biophys. 415, 146–154 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Hemmerlin, A. et al. Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in Tobacco Bright Yellow-2 cells. J. Biol. Chem. 278, 26666–26676 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Laule, O. et al. Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 100, 6866–6871 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wu, S. et al. Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat. Biotechnol. 24, 1441–1447 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Kingston, D.G.I. Taxol: the chemistry and structure-activity relationships of a novel anticancer agent. Trends Biotechnol. 12, 222–227 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Horwitz, S.B. How to make Taxol from scratch. Nature 367, 593–594 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Frense, D. Taxanes: perspectives for biotechnological production. Appl. Microbiol. Biotechnol. 73, 1233–1240 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Kingston, D.G.I., Jagtap, P.G., Yuan, H. & Samala, L. The chemistry of Taxol and related taxoids. Prog. Chem. Org. Nat. Prod. 84, 53–225 (2002).

    CAS  Google Scholar 

  17. Vroman, J.A., Alvim-Gaston, M. & Avery, M.A. Current progress in the chemistry, medicinal chemistry and drug design of artemisinin based antimalarials. Curr. Pharm. Des. 5, 101–138 (1999).

    CAS  PubMed  Google Scholar 

  18. Chang, M.C.Y. & Keasling, J.D. Production of isoprenoid pharmaceuticals by engineered microbes. Nat. Chem. Biol. 2, 674–681 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Srinivasan, V. et al. Taxol production in bioreactors: kinetics of biomass accumulation, nutrient uptake, and Taxol production by cell suspensions of Taxus baccata. Biotechnol. Bioeng. 47, 666–676 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Khosla, C. & Keasling, J.D. Metabolic engineering for drug discovery and development. Nat. Rev. Drug Discov. 2, 1019–1025 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Pasquali, G., Porto, D.D. & Fett-Neto, A.G. Metabolic engineering of cell cultures versus whole plant complexity in production of bioactive monoterpene indole alkaloids: recent progress related to an old dilemma. J. Biosci. Bioeng. 101, 287–296 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Tabata, H. Paclitaxel production by plant cell culture technology. Adv. Biochem. Eng. Biotechnol. 87, 1–23 (2004).

    CAS  PubMed  Google Scholar 

  23. Tabata, H. Production of paclitaxel and related taxanes by cell suspension cultures of Taxus species. Curr. Drug Targets 7, 453–461 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Liu, C., Zhao, Y. & Wang, Y. Artemisinin: current state and perspectives for biotechnological production of an antimalarial drug. Appl. Microbiol. Biotechnol. 72, 11–20 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Lin, L.D. & Wu, J.Y. Enhancement of shikonin production in single- and two-phase suspension cultures of Lithospermum erythrorhizon cells using low-energy ultrasound. Biotechnol. Bioeng. 78, 81–88 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Fujita, Y. & Tabata, M. in Plant Tissue and Cell Culture (eds. Green, C.E., Somers, D.A., Hackett, W.P. & Biesboer, D.D.) 169–185 (Alan R. Liss, New York, 1987).

    Google Scholar 

  27. Vanisree, M. et al. Studies on the production of some important secondary metabolites from medicinal plants by plant tissue cultures. Bot. Bull. Acad. Sinica (Taiwan) 45, 1–22 (2004).

    CAS  Google Scholar 

  28. Lorence, A., Medina-Bolivar, F. & Nessler, C.L. Camptothecin and 10-hydroxycamptothecin from Camptotheca acuminata hairy roots. Plant Cell Rep. 22, 437–441 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Thengane, S.R. et al. Influence of medium composition on callus induction and camtothecin(s) accumulation in Nothapodytes foetida. Plant Cell Tissue Organ Cult. 72, 247–251 (2003).

    Article  CAS  Google Scholar 

  30. Kirakosyan, A., Sirvent, T.M., Gibson, D.M. & Kaufman, P.B. The production of hypericins and hyperforin by in vitro cultures of St. John's wort (Hypericum perforatum). Biotechnol. Appl. Biochem. 39 (Pt 1), 71–81 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Hu, Z.B. & Du, M. Hairy root and its application in plant genetic engineering. J. Integr. Plant Biol. 48, 121–127 (2006).

    Article  CAS  Google Scholar 

  32. Shanks, J.V. & Morgan, J. Plant 'hairy root' culture. Curr. Opin. Biotechnol. 10, 151–155 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Zhong, J. Plant cell culture for the production of paclitaxel and other taxanes. J. Biosci. Bioeng. 94, 591–599 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Ketchum, R.E.B., Gibson, D.M., Croteau, R.B. & Shuler, M.L. The kinetics of taxoid accumulation in cell suspension cultures of Taxus following elicitation with methyl jasmonate. Biotechnol. Bioeng. 62, 97–105 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Ketchum, R.E.B. & Gibson, D.M. Paclitaxel production in suspension cell cultures of Taxus. Plant Cell Tissue Organ Cult. 46, 9–16 (1996).

    Article  CAS  Google Scholar 

  36. Naill, M.C. & Roberts, S.C. Preparation of single cells from aggregated Taxus suspension cultures for population analysis. Biotechnol. Bioeng. 86, 817–826 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Naill, M.C. & Roberts, S.C. Cell cycle analysis of Taxus suspension cultures at the single cell level as an indicator of culture heterogeneity. Biotechnol. Bioeng. 90, 491–500 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Naill, M.C. & Roberts, S.C. Culture of isolated single cells from Taxus suspensions for the propagation of superior cell populations. Biotechnol. Lett. 27, 1725–1730 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Naill, M.C. & Roberts, S.C. Flow cytometric analysis of protein content in Taxus protoplasts and single cells as compared to aggregated suspension cultures. Plant Cell Rep. 23, 528–533 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Naill, M.C. & Roberts, S.C. Flow cytometric identification of paclitaxel-accumulating subpopulations. Biotechnol. Prog. 21, 978–983 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Gundlach, H., Muller, M.J., Kutchan, T.M. & Zenk, M.H. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc. Natl. Acad. Sci. USA 89, 2389–2393 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dubey, V.S., Bhalla, R. & Luthra, R. An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants. J. Biosci. 28, 637–646 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Ha, S.-H., Kim, J.-B., Hwang, Y.-S. & Lee, S.-W. Molecular characterization of three 3-hydroxy-3-methylglutaryl-CoA reductase genes including pathogen-induced Hmg2 from pepper (Capsicum annuum). Biochim. Biophys. Acta 1625, 253–260 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Chappell, J., Wolf, F., Proulx, J., Cuellar, R. & Saunders, C. Is the reaction catalyzed by 3-hydroxy-3-methylglutaryl coenzyme-A reductase a rate-limiting step for isoprenoid biosynthesis in plants? Plant Physiol. 109, 1337–1343 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Enfissi, E.M.A. et al. Metabolic engineering of the mevalonate and non-mevalonate isopentenyl diphosphate-forming pathways for the production of health-promoting isoprenoids in tomato. Plant Biotechnol. J. 3, 17–27 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Liao, Z.H. et al. Cloning and characterisation of the gene encoding HMG-CoA reductase from Taxus media and its functional identification in yeast. Funct. Plant Biol. 31, 73–81 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Souret, F.F., Kim, Y., Wysiouzil, B.E., Wobbe, K.K. & Weathers, P.J. Scale-up of Artemisia annua L. hairy root cultures produces complex pat terns of terpenoid gene expression. Biotechnol. Bioeng. 83, 653–667 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Ayora-Talavera, T., Chappell, J., Lozoya-Gloria, E. & Loyola-Vargas, V.M. Overexpression in Catharanthus roseus hairy roots of a truncated hamster 3-hydroxy-3-methylglutaryl-CoA reductase gene. Appl. Biochem. Biotechnol. 97, 135–145 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Lichtenthaler, H.K. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 47–65 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Rohmer, M. Mevalonate-independent methylerythritol phosphate pathway for isoprenoid biosynthesis. Elucidation and distribution. Pure Appl. Chem. 75, 375–387 (2003).

    Article  CAS  Google Scholar 

  51. Munoz-Bertomeu, J., Arrillaga, I., Ros, R. & Segura, J. Up-regulation of 1-deoxy-D-xylulose-5-phosphate synthase enhances production of essential oils in transgenic spike lavender. Plant Physiol. 142, 890–900 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gong, Y.F., Liao, Z.H., Guo, B.H., Sun, X.F. & Tang, K.X. Molecular cloning and expression profile analysis of Ginkgo biloba DXS gene encoding 1-deoxy-D-xylulose-5-phosphate synthase, the first committed enzyme of the 2-C-methyl-D-erythritol 4-phosphate pathway. Planta Med. 72, 329–335 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Estevez, J.M., Cantero, A., Reindl, A., Reichler, S. & Leon, P. 1-deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J. Biol. Chem. 276, 22901–22909 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Khemvong, S. & Suvachittanont, W. Molecular cloning and expression of a cDNA encoding 1-deoxy-D-xylulose-5-phosphate synthase from oil palm Elaeis guineensis Jacq. Plant Sci. 169, 571–578 (2005).

    Article  CAS  Google Scholar 

  55. Mahmoud, S.S. & Croteau, R. Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase. Proc. Natl. Acad. Sci. USA 98, 8915–8920 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Carretero-Paulet, L. et al. Enhanced flux through the methylerythritol 4-phosphate pathway in Arabidopsis plants overexpressing deoxyxylulose 5-phosphate reductoisomerase. Plant Mol. Biol. 62, 683–695 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Page, J.E. et al. Functional analysis of the final steps of the 1-deoxy-D-xylulose 5-phosphate (DXP) pathway to isoprenoids in plants using virus-induced gene silencing. Plant Physiol. 134, 1401–1413 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jin, H. et al. Isolation and characterization of a 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase gene from Taxus media. Mol. Biol. 40, 914–921 (2006).

    Article  CAS  Google Scholar 

  59. Souret, F.D.F., Weathers, P.J. & Wobbe, K.K. The mevalonate-independent pathway is expressed in transformed roots of Artemisia annua and regulated by light and culture age. In Vitro Cell. Dev. Biol. Plant 38, 581–588 (2002).

    Article  CAS  Google Scholar 

  60. Cusido, R.M. et al. Source of isopentenyl diphosphate for Taxol and baccatin III biosynthesis in cell cultures of Taxus baccata. Biochem. Eng. J. 33, 159–167 (2007).

    Article  CAS  Google Scholar 

  61. Palazon, J., Cusido, R.M., Bonfill, M., Morales, C. & Pinol, M.T. Inhibition of paclitaxel and baccatin III accumulation by mevinolin and fosmidomycin in suspension cultures of Taxus baccata. J. Biotechnol. 101, 157–163 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Wang, Y.-D., Yuan, Y.-J., Lu, M., Wu, J.-C. & Jiang, J.-L. Inhibitor studies of isopentenyl pyrophosphate biosynthesis in suspension cultures of the yew Taxus chinensis var. mairei. Biotechnol. Appl. Biochem. 37, 39–43 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Wang, Y.D., Yuan, Y.J. & Wu, J.C. Translocation of isopentenyl pyrophosphate for Taxol biosynthesis in suspension cultures of Taxus chinensis var. mairei. Plant Cell Tissue Organ Cult. 74, 283–288 (2003).

    Article  CAS  Google Scholar 

  64. Jennewein, S., Wildung, M.R., Chau, M., Walker, K. & Croteau, R. Random sequencing of an induced Taxus cell cDNA library for identification of clones involved in Taxol biosynthesis. Proc. Natl. Acad. Sci. USA 101, 9149–9154 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Croteau, R., Ketchum, R.E.B., Long, R.M., Kaspera, R. & Wildung, M.R. Taxol biosynthesis and molecular genetics. Phytochem. Rev. 5, 75–97 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nims, E., Dubois, C., Roberts, S.C. & Walker, E.L. Expression profiling of genes involved in paclitaxel biosynthesis for targeted metabolic engineering. Metab. Eng. 8, 385–394 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Jasinski, M. et al. A plant plasma membrane ATP binding cassette-type transporter is involved in fungal terpenoid secretion. Plant Cell 13, 1095–1107 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hu, G.B., Fan, T.J. & Mei, X.G. Identification of a cDNA clone specific for the Taxol synthesis phase of Taxus chinensis cells by mRNA differential display. Nat. Prod. Res. 18, 365–371 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Shukla, A.K., Shasnay, A.K., Gupta, M.M. & Khanuja, S.P.S. Transcriptome analysis in Catharanthus roseus leaves and roots for comparative terpenoid indole alkaloid profiles. J. Exp. Bot. 57, 3921–3932 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Godiard, L. et al. Identification of new potential regulators of the Medicago truncatula-Sinorhizobium meliloti symbiosis using a large-scale suppression subtractive hybridization approach. Mol. Plant Microbe Interact. 20, 321–332 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Foucart, C. et al. Transcript profiling of a xylem vs phloem cDNA subtractive library identifies new genes expressed during xylogenesis in Eucalyptus. New Phytol. 170, 739–752 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Aharoni, A., Jongsma, M.A. & Bouwmeester, H.J. Volatile science? Metabolic engineering of terpenoids in plants. Trends Plant Sci. 10, 594–602 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. McCaskill, D. & Croteau, R. Some caveats for bioengineering terpenoid metabolism in plants. Trends Biotechnol. 16, 349–355 (1998).

    Article  CAS  Google Scholar 

  74. Yun, D.J., Hashimoto, T. & Yamada, Y. Metabolic engineering of medicinal plants:transgenic Atropa belladonna with an improved alkaloid composition. Proc. Natl. Acad. Sci. USA 89, 11799–11803 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liu, Y., Wang, H., Ye, H.-C. & Li, G.-F. Advances in the plant isoprenoid biosynthesis pathway and its metabolic engineering. J. Integr. Plant Biol. 47, 769–782 (2005).

    Article  CAS  Google Scholar 

  76. Ketchum, R.E., Wherland, L. & Croteau, R.B. Stable transformation and long-term maintenance of transgenic Taxus cell suspension cultures. Plant Cell Rep. (in the press).

  77. Huang, Q., Roessner, C.A., Croteau, R. & Scott, A.I. Engineering Escherischia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of Taxol. Bioorg. Med. Chem. 9, 2237–2242 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. DeJong, J. et al. Genetic engineering of Taxol biosynthetic genes in Saccharomyces cerevisiae. Biotechnol. Bioeng. 93, 212–224 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Jennewein, S. et al. Coexpression in yeast of Taxus cytochrome P450 reductase with cytochrome P450 oxygenases involved in Taxol biosynthesis. Biotechnol. Bioeng. 89, 588–598 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Besumbes, O. et al. Metabolic engineering of isoprenoid biosynthesis in Arabidopsis for the production of taxadiene, the first committed precursor of Taxol. Biotechnol. Bioeng. 88, 168–175 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Kovacs, K. et al. Redirection of carotenoid metabolism for the efficient production of taxadiene [taxa-4(5),11(12)-diene] in transgenic tomato fruit. Transgenic Res. 16, 121–126 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Fray, R.G. et al. Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellin pathway. Plant J. 8, 693–701 (1995).

    Article  CAS  Google Scholar 

  83. Gantet, P. & Memelink, J. Transcription factors: tools to engineer the production of pharmacologically active plant metabolites. Trends Pharmacol. Sci. 23, 563–569 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Van der Fits, L. & Memelink, J. ORCA3, a jasmonate-responsive transcriptional regulator or plant primary and secondary metabolism. Science 289, 295–297 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Lange, B.M. Integrative analysis of metabolic networks: from peaks to flux models? Curr. Opin. Plant Biol. 9, 220–226 (2006).

    Article  PubMed  Google Scholar 

  86. Baloglu, E. & Kingston, D.G.I. The taxane diterpenoids. J. Nat. Prod. 62, 1448–1472 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Kingston, D.G.I. & Newman, D.J. Taxoids: cancer-fighting compounds from nature. Curr. Opin. Drug Discov. Devel. 10, 130–144 (2007).

    CAS  PubMed  Google Scholar 

  88. Ketchum, R.E.B. & Croteau, R. in Biotechnology in Agriculture and Forestry (eds. Saito, K.D., Dixon, R.A. & Willmitzer, L.) 291–309 (Springer-Verlag, Berlin, 2006).

    Google Scholar 

  89. Morgan, J.A. & Rhodes, D. Mathematical modeling of plant metabolic pathways. Metab. Eng. 4, 80–89 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Rischer, H. et al. Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. Proc. Natl. Acad. Sci. USA 103, 5614–5619 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Plant terpenoid research in the Roberts laboratory has been largely funded by the US National Institutes of Health (R01 GM070852-01) and the US National Science Foundation (BES 9984463).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, S. Production and engineering of terpenoids in plant cell culture. Nat Chem Biol 3, 387–395 (2007). https://doi.org/10.1038/nchembio.2007.8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2007.8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing