Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The function of terpene natural products in the natural world

Abstract

As the largest class of natural products, terpenes have a variety of roles in mediating antagonistic and beneficial interactions among organisms. They defend many species of plants, animals and microorganisms against predators, pathogens and competitors, and they are involved in conveying messages to conspecifics and mutualists regarding the presence of food, mates and enemies. Despite the diversity of terpenes known, it is striking how phylogenetically distant organisms have come to use similar structures for common purposes. New natural roles undoubtedly remain to be discovered for this large class of compounds, given that such a small percentage of terpenes has been investigated so far.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of terpenes with established functions in nature.
Figure 2: Structurally similar terpenes often have very different ranges of biological activities.
Figure 3: Mode of action of the Artemisia annua sesquiterpene lactone artemisinin against the malarial parasite.
Figure 4: Mixtures of terpenes, such as conifer resin, may act synergistically in defense.

Similar content being viewed by others

References

  1. Buckingham, J. (ed.) Dictionary of Natural Products (Chapman and Hall, London, 1994).

    Google Scholar 

  2. Langenheim, J.H. Higher plant terpenoids: a phytocentric overview of their ecological roles. J. Chem. Ecol. 20, 1223–1280 (1994).

    CAS  PubMed  Google Scholar 

  3. Jansen, B.J.M. & de Groot, A. Occurrence, biological activity and synthesis of drimane sesquiterpenoids. Nat. Prod. Rep. 21, 449–477 (2004).

    CAS  PubMed  Google Scholar 

  4. Rastogi, N. et al. Antimycobacterial activity of chemically defined natural substances from the Caribbean flora in Guadeloupe. FEMS Immunol. Med. Microbiol. 20, 267–273 (1998).

    CAS  PubMed  Google Scholar 

  5. Lunde, C.S. & Kubo, I. Effect of polygodial on the mitochondrial ATPase of Saccharomyces cerevisiae. Antimicrob. Agents Chemother. 44, 1943–1953 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Justicia, J. et al. Total synthesis of 3-hydroxydrimanes mediated by titanocene(III)- evaluation of their antifeedant activity. Eur. J. Org. Chem. 2005, 712–718 (2005).

    Google Scholar 

  7. Lorimer, S.D., Perry, N.B., Foster, L.M. & Burgess, E.J. A nematode larval motility inhibition assay for screening plant extracts and natural products. J. Agric. Food Chem. 44, 2842–2845 (1996).

    CAS  Google Scholar 

  8. Ito, H., Muranaka, T., Mori, K., Jin, Z.X. & Yoshida, T. Dryofragin and aspidin PB, piscicidal components from Dryopteris fragrans. Chem. Pharm. Bull. (Tokyo) 45, 1720–1722 (1997).

    CAS  Google Scholar 

  9. Messchendorp, L., Gols, G.J.Z. & van Loon, J.J.A. Behavioural observations of Pieris brassicae larvae indicate multiple mechanisms of action of analogous drimane antifeedants. Entomol. Exp. Appl. 95, 217–227 (2000).

    CAS  Google Scholar 

  10. Paul, V.J. et al. Sesquiterpenoids of the drimane class from a sponge of the genus Dysidea. J. Nat. Prod. 60, 1115–1120 (1997).

    CAS  PubMed  Google Scholar 

  11. Lee, S., Peterson, C.J. & Coats, J.R. Fumigation toxicity of monoterpenoids to several stored product insects. J. Stored Prod. Res. 39, 77–85 (2003).

    CAS  Google Scholar 

  12. Hammer, K.A., Carson, C.F. & Riley, T.V. Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J. Appl. Microbiol. 95, 853–860 (2003).

    CAS  PubMed  Google Scholar 

  13. Friedman, M., Henika, P.R. & Mandrell, R.E. Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J. Food Prot. 65, 1545–1560 (2002).

    CAS  PubMed  Google Scholar 

  14. Frank, T., Bieri, K. & Speiser, B. Feeding deterrent effect of carvone, a compound from caraway seeds, on the slug Arion lusitanicus. Ann. Appl. Biol. 141, 93–100 (2002).

    CAS  Google Scholar 

  15. Szczepanik, M., Dams, I. & Wawrzeñczyk, C. Feeding deterrent activity of terpenoid lactones with the p-menthane system against the Colorado potato beetle (Coleoptera: Chrysomelidae). Environ. Entomol. 34, 1433–1440 (2005).

    CAS  Google Scholar 

  16. Vourc'h, G. et al. Monoterpene effect on feeding choice by deer. J. Chem. Ecol. 28, 2411–2427 (2002).

    CAS  PubMed  Google Scholar 

  17. Dussourd, D.E. & Hoyle, A.M. Poisoned plusiines: toxicity of milkweed latex and cardenolides to some generalist caterpillars. Chemoecology 10, 11–16 (2000).

    CAS  Google Scholar 

  18. Aharoni, A. et al. Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15, 2866–2884 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen, F. et al. Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell 15, 481–494 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Erbilgin, N., Krokene, P., Christiansen, E., Zeneli, G. & Gershenzon, J. Exogenous application of methyl jasmonate elicits defenses in Norway spruce (Picea abies) and reduces host colonization by the bark beetle Ips typographus. Oecologia 148, 426–436 (2006).

    PubMed  Google Scholar 

  21. Morrissey, J.P. & Osbourn, A.E. Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol. Mol. Biol. Rev. 63, 708–724 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Papadopoulou, K., Melton, R.E., Leggett, M., Daniels, M.J. & Osbourn, A.E. Compromised disease resistance in saponin-deficient plants. Proc. Natl. Acad. Sci. USA 96, 12923–12928 (1999).

    CAS  PubMed  Google Scholar 

  23. Laurent, P., Braekman, J.-C., Daloze, D. & Pasteels, J. Biosynthesis of defensive compounds from beetles and ants. Eur. J. Org. Chem. 2003, 2733–2743 (2003).

    Google Scholar 

  24. Quintana, A. et al. Interspecific variation in terpenoid composition of defensive secretions of European Reticulitermes termites. J. Chem. Ecol. 29, 639–652 (2003).

    CAS  PubMed  Google Scholar 

  25. Nishida, R. Sequestration of defensive substances from plants by Lepidoptera. Annu. Rev. Entomol. 47, 57–92 (2002).

    CAS  PubMed  Google Scholar 

  26. Carita, L., Mappes, J., Jussi, P. & Martti, V. Effects of group size and pine defence chemicals on Diprionid sawfly survival against ant predation. Oecologia 150, 519–526 (2006).

    PubMed  Google Scholar 

  27. Burse, A. et al. Iridoid biosynthesis in Chrysomelina larvae: fat body produces early terpenoid precursors. Insect Biochem. Mol. Biol. 37, 255–265 (2007).

    CAS  PubMed  Google Scholar 

  28. Paul, V.J., Puglisi, M.P. & Ritson-Williams, R. Marine chemical ecology. Nat. Prod. Rep. 23, 153–180 (2006).

    CAS  PubMed  Google Scholar 

  29. Erickson, A.A., Paul, V.J., van Alstyne, K.L. & Kwiatkowski, L.M. Palatability of macroalgae that use different types of chemical defenses. J. Chem. Ecol. 32, 1883–1895 (2006).

    CAS  PubMed  Google Scholar 

  30. Paul, V.J. & van Alstyne, K.L. Activation of chemical defenses in the tropical green algae Halimeda, spp. J. Exp. Mar. Biol. Ecol. 160, 191–203 (1992).

    CAS  Google Scholar 

  31. Jung, V. & Pohnert, G. Rapid wound-activated transformation of the green algal defensive metabolite caulerpenyne. Tetrahedron 57, 7169–7172 (2001).

    CAS  Google Scholar 

  32. Gavagnin, M. & Fontana, A. Diterpenes from marine opisthobranch molluscs. Curr. Org. Chem. 4, 1201–1248 (2000).

    CAS  Google Scholar 

  33. Bhadury, P. & Wright, P.C. Exploitation of marine algae: biogenic compounds for potential antifouling applications. Planta 219, 561–578 (2004).

    CAS  PubMed  Google Scholar 

  34. Hedin, P.A., Parrott, W.L. & Jenkins, J.N. Relationships of glands, cotton square terpenoid aldehydes, and other allelochemicals to larval growth of Heliothis virescens (Lepidoptera, Noctuidae). J. Econ. Entomol. 85, 359–364 (1992).

    CAS  Google Scholar 

  35. Stipanovic, R.D., Bell, A.A. & Benedict, C.R. in Biologically Active Natural Products: Agrochemicals (eds. Culter, H.G. & Culter, S.J.) 211–220 (CRC Press, Boca Raton, Florida, USA, 1999).

    Google Scholar 

  36. Stipanovic, R.D., Puckhaber, L.S., Bell, A.A., Percival, A.E. & Jacobs, J. Occurrence of (+)- and (−)-gossypol in wild species of cotton and in Gossypium hirsutum Var. marie-galante (Watt) Hutchinson. J. Agric. Food Chem. 53, 6266–6271 (2005).

    CAS  PubMed  Google Scholar 

  37. Liu, S. et al. The (−) enantiomer of gossypol possesses higher anticancer potency than racemic gossypol in human breast cancer. Anticancer Res. 22, 33–38 (2002).

    PubMed  Google Scholar 

  38. Gonzalez-Garza, M.T., Matlin, S.A., Mata-Cardenas, B.D. & Said-Fernandez, S. Further studies on the in vitro activity of gossypol as antiamebic agent. Arch. Med. Res. 23, 69–70 (1992).

    CAS  PubMed  Google Scholar 

  39. Matlin, S.A. et al. (−)-Gossypol: an active male antifertility agent. Contraception 31, 141–149 (1985).

    CAS  PubMed  Google Scholar 

  40. Oliver, C.L. et al. (−)-Gossypol acts directly on the mitochondria to overcome Bcl-2- and Bcl-XL-mediated apoptosis resistance. Mol. Cancer Ther. 4, 23–31 (2005).

    CAS  PubMed  Google Scholar 

  41. Wolter, K.G. et al. (−)-Gossypol inhibits growth and promotes apoptosis of human head and neck squamous cell carcinoma in vivo. Neoplasia 8, 163–172 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Stipanovic, R.D., Lopez, J.D., Jr., Dowd, M.K., Puckhaber, L.S. & Duke, S.E. Effect of racemic and (+)- and (−)-gossypol on the survival and development of Helicoverpa zea larvae. J. Chem. Ecol. 32, 959–968 (2006).

    CAS  PubMed  Google Scholar 

  43. Puckhaber, L.S., Dowd, M.K., Stipanovic, R.D. & Howell, C.R. Toxicity of (+)- and (−)-gossypol to the plant pathogen, Rhizoctonia solani. J. Agric. Food Chem. 50, 7017–7021 (2002).

    CAS  PubMed  Google Scholar 

  44. Sunilkumar, G., Campbell, L.M., Puckhaber, L., Stipanovic, R.D. & Rathore, K.S. Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc. Natl. Acad. Sci. USA 103, 18054–18059 (2006).

    CAS  PubMed  Google Scholar 

  45. Soderlund, D.M. in Pyrethrum Flowers: Production, Chemistry, Toxicology, and Uses (eds. Casida, J.E. & Quistad, G.B.) 297–233 (Oxford University Press, New York, 1995).

    Google Scholar 

  46. Cox, S.D. et al. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J. Appl. Microbiol. 88, 170–175 (2000).

    CAS  PubMed  Google Scholar 

  47. Inoue, Y. et al. The antibacterial effects of terpene alcohols on Staphylococcus aureus and their mode of action. FEMS Microbiol. Lett. 237, 325–331 (2004).

    CAS  PubMed  Google Scholar 

  48. Guillet, G., Bélanger, A. & Arnason, J.T. Volatile monoterpenes in Porophyllum gracile and P. ruderale (Asteraceae): identification, localization and insecticidal synergism with α-terthienyl. Phytochemistry 49, 423–429 (1998).

    CAS  Google Scholar 

  49. Kang, R. et al. Antimicrobial activity of the volatile constituents of Perilla frutescens and its synergistic effects with polygodial. J. Agric. Food Chem. 40, 2328–2330 (1992).

    CAS  Google Scholar 

  50. Kanikkannan, N., Kandimalla, K., Lamba, S.S. & Singh, M. Structure-activity relationship of chemical penetration enhancers in transdermal drug delivery. Curr. Med. Chem. 7, 593–608 (2000).

    CAS  PubMed  Google Scholar 

  51. Krishna, S., Woodrow, C.J., Staines, H.M., Haynes, R.K. & Mercereau-Puijalon, O. Re-evaluation of how artemisinins work in light of emerging evidence of in vitro resistance. Trends Mol. Med. 12, 200–205 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Eckstein-Ludwig, U. et al. Artemisinins target the SERCA of Plasmodium falciparum. Nature 424, 957–961 (2003).

    CAS  PubMed  Google Scholar 

  53. Jordan, M.A. & Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer 4, 253–265 (2004).

    CAS  PubMed  Google Scholar 

  54. Dudareva, N., Negre, F., Nagegowda, D.A. & Orlova, I. Plant volatiles: recent advances and future perspectives. Crit. Rev. Plant Sci. 25, 417–440 (2006).

    CAS  Google Scholar 

  55. Francke, W. & Dettner, K. in Chemistry of Pheromones and Other Semiochemicals II (ed. Schulz, S.) 85–166 (Springer-Verlag, Berlin, 2005).

    Google Scholar 

  56. Hick, A.J., Luszniak, M.C. & Pickett, J.A. Volatile isoprenoids that control insect behaviour and development. Nat. Prod. Rep. 16, 39–54 (1999).

    CAS  Google Scholar 

  57. Hardie, J., Pickett, J.A., Pow, E.M. & Smiley, D.W.M. in Pheromones of Non-Lepidopteran Insects Associated with Agricultural Plants (eds Hardie, J. & Minks, A.K.) 227–250 (CAB International, Wallingford, UK, 1999).

    Google Scholar 

  58. Kunert, G., Otto, S., Röse, U.S.R., Gershenzon, J. & Weisser, W.W. Alarm pheromone mediates production of winged dispersal morphs in aphids. Ecol. Lett. 8, 596–603 (2005).

    Google Scholar 

  59. Beale, M.H. et al. Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior. Proc. Natl. Acad. Sci. USA 103, 10509–10513 (2006).

    CAS  PubMed  Google Scholar 

  60. Gibson, R.W. & Pickett, J.A. Wild potato repels aphids by release of aphid alarm pheromone. Nature 302, 608–609 (1983).

    CAS  Google Scholar 

  61. Knudsen, J.T., Eriksson, R., Gershenzon, J. & Stahl, B. Diversity and distribution of floral scent. Bot. Rev. 72, 1–120 (2006).

    Google Scholar 

  62. Wright, G.A., Lutmerding, A., Dudareva, N. & Smith, B.H. Intensity and the ratios of compounds in the scent of snapdragon flowers affect scent discrimination by honeybees (Apis mellifera). J. Comp. Physiol. [A] 191, 105–114 (2005).

    CAS  Google Scholar 

  63. Raguso, R.A. & Light, D.M. Electroantennogram responses of male Sphinx perelegans hawkmoths to floral and “green-leaf volatiles”. Entomol. Exp. Appl. 86, 287–293 (1998).

    CAS  Google Scholar 

  64. Shields, V.D.C. & Hildebrand, J.G. Responses of a population of antennal olfactory receptor cells in the female moth Manduca sexta to plant-associated volatile organic compounds. J. Comp. Physiol. [A] 186, 1135–1151 (2001).

    CAS  Google Scholar 

  65. Hansson, B.S., Carlsson, M.A. & Kalinovà, B. Olfactory activation patterns in the antennal lobe of the sphinx moth, Manduca sexta. J. Comp. Physiol. [A] 189, 301–308 (2003).

    CAS  Google Scholar 

  66. Carlsson, M.A., Galizia, C.G. & Hansson, B.S. Spatial representation of odours in the antennal lobe of the moth Spodoptera littoralis (Lepidoptera: Noctuidae). Chem. Senses 27, 231–244 (2002).

    PubMed  Google Scholar 

  67. Carlsson, M.A. & Hansson, B.S. in Biology of Floral Scent (eds. Dudareva, N. & Pichersky, E.) 243–261 (Taylor & Francis, Boca Raton, Florida, USA, 2006).

    Google Scholar 

  68. Dicke, M. et al. Isolation and identification of volatile kairomone that affects acarine predator-prey interactions- involvement of host plant in its production. J. Chem. Ecol. 16, 381–396 (1990).

    CAS  PubMed  Google Scholar 

  69. Turlings, T.C.J., Tumlinson, J.H. & Lewis, W.J. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250, 1251–1253 (1990).

    CAS  PubMed  Google Scholar 

  70. Kessler, A. & Baldwin, I.T. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291, 2141–2144 (2001).

    CAS  PubMed  Google Scholar 

  71. Kappers, I.F. et al. Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science 309, 2070–2072 (2005).

    CAS  PubMed  Google Scholar 

  72. Schnee, C. et al. The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc. Natl. Acad. Sci. USA 103, 1129–1134 (2006).

    CAS  PubMed  Google Scholar 

  73. Hilker, M., Kobs, C., Varama, M. & Schrank, K. Insect egg deposition induces Pinus sylvestris to attract egg parasitoids. J. Exp. Biol. 205, 455–461 (2002).

    PubMed  Google Scholar 

  74. Mumm, R. & Hilker, M. The significance of background odour for an egg parasitoid to detect plants with host eggs. Chem. Senses 30, 337–343 (2005).

    CAS  PubMed  Google Scholar 

  75. Mumm, R., Schrank, K., Wegener, R., Schulz, S. & Hilker, M. Chemical analysis of volatiles emitted by Pinus sylvestris after induction by insect oviposition. J. Chem. Ecol. 29, 1235–1252 (2003).

    CAS  PubMed  Google Scholar 

  76. Rasmann, S. et al. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434, 732–737 (2005).

    CAS  PubMed  Google Scholar 

  77. Matusova, R. et al. The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol. 139, 920–934 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Akiyama, K., Matsuzaki, K. & Hayashi, H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435, 824–827 (2005).

    CAS  PubMed  Google Scholar 

  79. Carroll, M.J., Schmelz, E.A., Meagher, R.L. & Teal, P.E.A. Attraction of Spodoptera frugiperda larvae to volatiles from herbivore-damaged maize seedlings. J. Chem. Ecol. 32, 1911–1924 (2006).

    CAS  PubMed  Google Scholar 

  80. Runyon, J.B., Mescher, M.C. & De Moraes, C.M. Volatile chemical cues guide host location and host selection by parasitic plants. Science 313, 1964–1967 (2006).

    CAS  PubMed  Google Scholar 

  81. Bouwmeester, H.J., Matusova, R., Zhongkui, S. & Beale, M.H. Secondary metabolite signaling in host-parasitic plant interactions. Curr. Opin. Plant Biol. 6, 358–364 (2003).

    CAS  PubMed  Google Scholar 

  82. Heil, M. & Bueno, J.C.S. Within-plant signalling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc. Natl. Acad. Sci. USA 104, 5467–5472 (2007).

    CAS  PubMed  Google Scholar 

  83. Baldwin, I.T., Halitschke, R., Paschold, A., von Dahl, C.C. & Preston, C.A. Volatile signaling in plant-plant interactions: 'talking trees' in the genomic era. Science 311, 812–815 (2006).

    CAS  Google Scholar 

  84. Dicke, M. & Bruin, J. Chemical information transfer between plants: back to the future. Biochem. Syst. Ecol. 29, 981–994 (2001).

    CAS  Google Scholar 

  85. Ton, J. et al. Priming by airborne signals boosts direct and indirect resistance in maize. Plant J. 49, 16–26 (2007).

    CAS  PubMed  Google Scholar 

  86. Pimentel, D. & Bellotti, A.C. Parasite-host population systems and genetic stability. Am. Nat. 110, 877–888 (1976).

    Google Scholar 

  87. Zhao, J.-Z. et al. Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nat. Biotechnol. 21, 1493–1497 (2003).

    CAS  PubMed  Google Scholar 

  88. Feeny, P. in Herbivores: Their Interactions with Secondary Plant Metabolites 2nd edn, Vol. 2 (eds. Rosenthal, G.A. & Berenbaum, M.R.) 1–44 (Academic Press, San Diego, 1992).

    Google Scholar 

  89. Fewell, A.M. & Roddick, J.G. Interactive antifungal activity of the glycoalkaloids α-solanine and α-chaconine. Phytochemistry 33, 323–328 (1993).

    CAS  Google Scholar 

  90. Stermitz, F.R., Lorenz, P., Tawara, J.N., Zenewicz, L.A. & Lewis, K. Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5′-methoxyhydnocarpin, a multidrug pump inhibitor. Proc. Natl. Acad. Sci. USA 97, 1433–1437 (2000).

    CAS  PubMed  Google Scholar 

  91. Berenbaum, M. & Neal, J.J. Synergism between myristicin and xanthotoxin, a naturally co-occurring plant toxicant. J. Chem. Ecol. 11, 1349–1358 (1985).

    CAS  PubMed  Google Scholar 

  92. Akhtar, Y. & Isman, M.B. Binary mixtures of feeding deterrents mitigate the decrease in feeding deterrent response to antifeedants following prolonged exposure in the cabbage looper, Trichoplusia ni (Lepidoptera: Noctuidae). Chemoecology 13, 177–182 (2003).

    CAS  Google Scholar 

  93. Phillips, M.A. & Croteau, R.B. Resin-based defenses in conifers. Trends Plant Sci. 4, 184–190 (1999).

    CAS  PubMed  Google Scholar 

  94. Himejima, M., Hobson, K.R., Otsuka, T., Wood, D.L. & Kubo, I. Antimicrobial terpenes from oleoresin of ponderosa pine tree Pinus ponderosa: a defense mechanism against microbial invasion. J. Chem. Ecol. 18, 1809–1818 (1992).

    CAS  PubMed  Google Scholar 

  95. Challis, G.L. & Hopwood, D.A. Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc. Natl. Acad. Sci. USA 100, 14555–14561 (2003).

    CAS  PubMed  Google Scholar 

  96. Staerk, D. et al. Isolation of a library of aromadendranes from Landophia dulcis and its characterization using the VolSurf approach. J. Nat. Prod. 67, 799–805 (2004).

    PubMed  Google Scholar 

  97. Firn, R.D. & Jones, C.G. Natural products– a simple model to explain chemical diversity. Nat. Prod. Rep. 20, 382–391 (2003).

    CAS  Google Scholar 

  98. Ridley, R.G. Malaria: to kill a parasite. Nature 424, 887–889 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to K. Falk for help with references and figures, and to the Max Planck Society (J.G.), the German National Science Foundation (J.G.), the European Commission (J.G.), and the US National Science Foundation (N.D.) for supporting their research on terpenes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Gershenzon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gershenzon, J., Dudareva, N. The function of terpene natural products in the natural world. Nat Chem Biol 3, 408–414 (2007). https://doi.org/10.1038/nchembio.2007.5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2007.5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing