Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An RNA G-quadruplex in the 5′ UTR of the NRAS proto-oncogene modulates translation

Abstract

Guanine-rich nucleic acid sequences can adopt noncanonical four-stranded secondary structures called guanine (G)-quadruplexes1. Bioinformatics analysis suggests that G-quadruplex motifs are prevalent in genomes2, which raises the need to elucidate their function. There is now evidence for the existence of DNA G-quadruplexes at telomeres with associated biological function3. A recent hypothesis supports the notion that gene promoter elements contain DNA G-quadruplex motifs that control gene expression at the transcriptional level4. We discovered a highly conserved, thermodynamically stable RNA G-quadruplex in the 5′ untranslated region (UTR) of the gene transcript of the human NRAS proto-oncogene. Using a cell-free translation system coupled to a reporter gene assay, we have demonstrated that this NRAS RNA G-quadruplex modulates translation. This is the first example of translational repression by an RNA G-quadruplex. Bioinformatics analysis has revealed 2,922 other 5′ UTR RNA G-quadruplex elements in the human genome. We propose that RNA G-quadruplexes in the 5′ UTR modulate gene expression at the translational level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biophysical analysis of the NRQ RNA G-quadruplex.
Figure 2: Effect of the NRAS 5′ UTR on the translational efficiency of chimeric RNA.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Neidle, S. & Balasubramanian, S. Quadruplex Nucleic Acids (RSC Biomolecular Sciences, Cambridge, 2006).

    Book  Google Scholar 

  2. Huppert, J.L. & Balasubramanian, S. Prevelance of quadruplexes in the human genome. Nucleic Acids Res. 33, 2908–2916 (2005).

    Article  CAS  Google Scholar 

  3. Paeschke, K., Simonsson, T., Postberg, J., Rhodes, D. & Lipps, H.J. Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo. Nat. Struct. Mol. Biol. 12, 847–854 (2005).

    Article  CAS  Google Scholar 

  4. Siddiqui-Jain, A., Grand, C.L., Bearss, D.J. & Hurley, L.H. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc. Natl. Acad. Sci. USA 99, 11593–11598 (2002).

    Article  CAS  Google Scholar 

  5. Saccà, B., Lacroix, L. & Mergny, J.-L. The effect of chemical modifications on the thermal stability of different G-quadruplex-forming oligonucleotides. Nucleic Acids Res. 33, 1182–1192 (2005).

    Article  Google Scholar 

  6. Willis, A.E. Translational control of growth factor and proto-oncogene expression. Int. J. Biochem. Cell Biol. 31, 73–86 (1999).

    Article  CAS  Google Scholar 

  7. Downward, J. Targeting Ras signalling pathways in cancer therapy. Nat. Rev. Cancer 3, 11–22 (2003).

    Article  CAS  Google Scholar 

  8. Barbacid, M. Ras genes. Annu. Rev. Biochem. 56, 779–827 (1987).

    Article  CAS  Google Scholar 

  9. Eskandarpour, M. et al. Suppression of oncogenic NRAS by RNA interference induces apoptosis of human melanoma cells. Int. J. Cancer 115, 65–73 (2005).

    Article  CAS  Google Scholar 

  10. Hall, A. & Brown, R. Human N-ras: cDNA cloning and gene structure. Nucleic Acids Res. 13, 5255–5268 (1985).

    Article  CAS  Google Scholar 

  11. Balagurumoorthy, P., Brahmachari, S.K., Mohanty, D., Bansal, M. & Sasisekharan, V. Hairpin and parallel quartet structure for telomeric sequences. Nucleic Acids Res. 20, 4061–4067 (1992).

    Article  CAS  Google Scholar 

  12. Tang, C.-F. & Shafer, R.H. Engineering the quadruplex fold: nucleoside conformation determines both folding topology and molecularity in guanine quadruplexes. J. Am. Chem. Soc. 128, 5966–5973 (2006).

    Article  CAS  Google Scholar 

  13. Mergny, J.-L., Phan, A.-T. & Lacroix, L. Following G-quartet formation by UV-spectroscopy. FEBS Lett. 435, 74–78 (1998).

    Article  CAS  Google Scholar 

  14. Hardin, C.C., Watson, T., Corregan, M. & Bailey, C. Cation-dependent transition between the quadruplex and Watson-Crick hairpin forms of d(CGCG3GCG). Biochemistry 31, 833–841 (1992).

    Article  CAS  Google Scholar 

  15. DiLella, A.G. et al. Utility of firefly luciferase as a reporter gene for promoter activity in transgenic mice. Nucleic Acids Res. 16, 4159 (1988).

    Article  CAS  Google Scholar 

  16. Kozak, M. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J. Biol. Chem. 266, 19867–19870 (1991).

    CAS  PubMed  Google Scholar 

  17. Searle, M.S. & Balkwill, G.D. in Quadruplex Nucleic Acids (eds. Neidle, S. & Balasubramanian, S.) 131–153 (RSC Biomolecular Sciences, Cambridge, 2006).

    Google Scholar 

  18. Neidle, S. & Parkinson, G. Telomere maintenance as a target for anticancer drug discovery. Nat. Rev. Drug Discov. 1, 383–393 (2002).

    Article  CAS  Google Scholar 

  19. Mergny, J.L. & Lacroix, L. Analysis of thermal melting curves. Oligonucleotides 13, 515–537 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Cancer Research UK, the Cambridge Commonwealth Trust and Trinity College, Cambridge for funding. S.B. is a Biotechnology and Biological Sciences Research Council career development fellow. J.L.H. is a research fellow at Trinity College, Cambridge. We thank Z. Jawad-Alami for useful discussions and S. Sewitz for critically reading this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.K., A.B. and S.B. conceived and designed the experiments. S.K. performed all the experiments. S.K. and A.B. analyzed the experimental data. J.L.H. conceived, designed and carried out the bioinformatics studies. All four authors discussed the results, and the manuscript was written by S.K. and S.B. with contributions from A.B. and J.L.H.

Corresponding author

Correspondence to Shankar Balasubramanian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

cDNA sequence of NRAS 5′ UTR. (PDF 98 kb)

Supplementary Fig. 2

CD melting of NRQ RNA G quadruplex. (PDF 37 kb)

Supplementary Table 1

Second G-quadruplex sequence motif in the NRAS 5′ UTRs of mouse and dog. (PDF 66 kb)

Supplementary Table 2

UV-melting temperatures of NRQ RNA G quadruplex at various strand concentrations. (PDF 18 kb)

Supplementary Table 3

UV-melting temperatures of NRQ RNA G quadruplex with different monovalent cations. (PDF 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumari, S., Bugaut, A., Huppert, J. et al. An RNA G-quadruplex in the 5′ UTR of the NRAS proto-oncogene modulates translation. Nat Chem Biol 3, 218–221 (2007). https://doi.org/10.1038/nchembio864

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio864

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing