Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Catalytic generation of N2O3 by the concerted nitrite reductase and anhydrase activity of hemoglobin

Abstract

Nitrite reacts with deoxyhemoglobin to form nitric oxide (NO) and methemoglobin. Though this reaction is experimentally associated with NO generation and vasodilation, kinetic analysis suggests that NO should not be able to escape inactivation in the erythrocyte. We have discovered that products of the nitrite-hemoglobin reaction generate dinitrogen trioxide (N2O3) via a novel reaction of NO and nitrite-bound methemoglobin. The oxygen-bound form of nitrite-methemoglobin shows a degree of ferrous nitrogen dioxide (Fe(II)-NO2˙) character, so it may rapidly react with NO to form N2O3. N2O3 partitions in lipid, homolyzes to NO and readily nitrosates thiols, all of which are common pathways for NO escape from the erythrocyte. These results reveal a fundamental heme globin– and nitrite-catalyzed chemical reaction pathway to N2O3, NO and S-nitrosothiol that could form the basis of in vivo nitrite-dependent signaling. Because the reaction redox-cycles (that is, regenerates ferrous heme) and the nitrite-methemoglobin intermediate is not observable by electron paramagnetic resonance spectroscopy, this reaction has been 'invisible' to experimentalists over the last 100 years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HbFe(III)-NO2 (nitrite-MetHb) is the intermediate in the deoxyhemoglobin-nitrite reaction.
Figure 2: EPR silence of HbFe(III)-NO2.
Figure 3: Electronic configuration of HbFe(III)-NO2.
Figure 4: Reductive nitrosylation of HbFe(III)-NO2 catalyzed by NO.
Figure 5: Nitrite-mediated nitrosothiol formation.
Figure 6: NO-catalyzed reduction of HbFe(III)-NO2 generates gas-phase N2O3.
Figure 7: Model of nitrite- and Hb-mediated N2O3 export and nitrosation.

Similar content being viewed by others

References

  1. Gladwin, M.T. et al. Role of circulating nitrite and S-nitrosohemoglobin in the regulation of regional blood flow in humans. Proc. Natl. Acad. Sci. USA 97, 11482–11487 (2000).

    Article  CAS  Google Scholar 

  2. Cosby, K. et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat. Med. 9, 1498–1505 (2003).

    Article  CAS  Google Scholar 

  3. Gladwin, M.T. et al. The emerging biology of the nitrite anion. Nat. Chem. Biol. 1, 308–314 (2005).

    Article  CAS  Google Scholar 

  4. Bryan, N.S. et al. Nitrite is a signaling molecule and regulator of gene expression in mammalian tissues. Nat. Chem. Biol. 1, 290–297 (2005).

    Article  CAS  Google Scholar 

  5. Modin, A. et al. Nitrite-derived nitric oxide: a possible mediator of 'acidic-metabolic' vasodilation. Acta Physiol. Scand. 171, 9–16 (2001).

    CAS  Google Scholar 

  6. Huang, K.T. et al. The reaction between nitrite and deoxyhemoglobin: reassessment of reaction kinetics and stoichiometry. J. Biol. Chem. 280, 31126–31131 (2005).

    Article  CAS  Google Scholar 

  7. Huang, Z. et al. Enzymatic function of hemoglobin as a nitrite reductase that produces nitric oxide under allosteric control. J. Clin. Invest. 115, 2099–2107 (2005).

    Article  CAS  Google Scholar 

  8. Dejam, A. et al. Nitrite infusion in humans and nonhuman primates. Endocrine effects, pharmacokinetics, and tolerance formation. Circulation 116, 1821–1831 (2007).

    Article  CAS  Google Scholar 

  9. Enemark, J.H. & Feltham, R.D. Principles of structure, bonding, and reactivity for metal nitrosyl complexes. Coord. Chem. Rev. 13, 339–406 (1974).

    Article  CAS  Google Scholar 

  10. Crawford, J.H. et al. Hypoxia, red blood cells, and nitrite regulate NO-dependent hypoxic vasodilation. Blood 107, 566–574 (2006).

    Article  CAS  Google Scholar 

  11. Nagababu, E., Ramasamy, S., Abernethy, D.R. & Rifkind, J.M. Active nitric oxide produced in the red cell under hypoxic conditions by deoxyhemoglobin-mediated nitrite reduction. J. Biol. Chem. 278, 46349–46356 (2003).

    Article  CAS  Google Scholar 

  12. Jeffers, A. et al. Hemoglobin mediated nitrite activation of soluble guanylyl cyclase. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 142, 130–135 (2005).

    Article  Google Scholar 

  13. Shiva, S. et al. Deoxymyoglobin is a nitrite reductase that generates nitric oxide and regulates mitochondrial respiration. Circ. Res. 100, 654–661 (2007).

    Article  CAS  Google Scholar 

  14. Rassaf, T. et al. Nitrite reductase function of deoxymyoglobin - oxygen sensor and regulator of cardiac energetics and function. Circ. Res. 100, 1749–1754 (2007).

    Article  CAS  Google Scholar 

  15. Robinson, J.M. & Lancaster, J.R. Hemoglobin-mediated, hypoxia-induced vasodilation via nitric oxide - mechanism(s) and physiologic versus pathophysiologic relevance. Am. J. Respir. Cell Mol. Biol. 32, 257–261 (2005).

    Article  CAS  Google Scholar 

  16. Williams, D.L.H. Nitrosation Reactions and the Chemsitry of Nitric Oxide 5–8 (Elsevier, Amsterdam, 2004).

    Google Scholar 

  17. Wink, D.A., Darbyshire, J.F., Nims, R.W., Saavedra, J.E. & Ford, P.C. Reactions of the bioregulatory agent nitric-oxide in oxygenated aqueous-media - determination of the kinetics for oxidation and nitrosation by intermediates generated in the NO/O2 reaction. Chem. Res. Toxicol. 6, 23–27 (1993).

    Article  CAS  Google Scholar 

  18. Dabora, R., Molina, M., Ng, V., Wishnok, J.S. & Tannenbaum, S.R. Nitrosation by alkyl nitrites - catalysis by inorganic salts. IARC Sci. Publ. 57, 311–316 (1984).

    CAS  Google Scholar 

  19. Stepuro, I.I., Chaikovskaya, N.A., Solodunov, A.A. & Artsukevich, A.N. Generation of NO during oxidation of hemoglobin ferroforms by nitrite. Biochem. Moscow 62, 960–966 (1997).

    CAS  Google Scholar 

  20. Luchsinger, B.P. et al. Routes to S-nitroso-hemoglobin formation with heme redox and preferential reactivity in the beta subunits. Proc. Natl. Acad. Sci. USA 100, 461–466 (2003).

    Article  CAS  Google Scholar 

  21. Fernandez, B.O. & Ford, P.C. Nitrite catalyzes ferriheme protein reductive nitrosylation. J. Am. Chem. Soc. 125, 10510–10511 (2003).

    Article  CAS  Google Scholar 

  22. Nagababu, E., Ramasamy, S. & Rifkind, J.M. S-Nitrosohemoglobin: a mechanism for its formation in conjunction with nitrite reduction by deoxyhemoglobin. Nitric Oxide 15, 20–29 (2006).

    Article  CAS  Google Scholar 

  23. Angelo, M., Singel, D.J. & Stamler, J.S. An S-nitrosothiol (SNO) synthase function of hemoglobin that utilizes nitrite as a substrate. Proc. Natl. Acad. Sci. USA 103, 8366–8371 (2006).

    Article  CAS  Google Scholar 

  24. Day, E.P. et al. Magnetization of the sulfite and nitrite complexes of oxidized sulfite and nitrite reductases - electron-paramagnetic-res silent spin S = 1/2 states. Biochemistry 27, 2126–2132 (1988).

    Article  CAS  Google Scholar 

  25. Young, L.J. & Siegel, L.M. On the reaction of ferric heme-proteins with nitrite and sulfite. Biochemistry 27, 2790–2800 (1988).

    Article  CAS  Google Scholar 

  26. Rodkey, F.L. Mechanism for conversion of oxyhemoglobin to methemoglobin by nitrite. Clin. Chem. 22, 1986–1990 (1976).

    CAS  PubMed  Google Scholar 

  27. Wanat, A. et al. Nitrite binding to metmyoglobin and methemoglobin in comparison to nitric oxide binding. J. Biol. Inorg. Chem. 7, 165–176 (2002).

    Article  CAS  Google Scholar 

  28. Conradie, J. & Ghosh, A. Iron(iii)-nitro porphyrins: theoretical exploration of a unique class of reactive molecules. Inorg. Chem. 45, 4902–4909 (2006).

    Article  CAS  Google Scholar 

  29. O'Shea, S.K., Wang, W., Wade, R.S. & Castro, C.E. Selective oxygen transfers with iron(iii) porphyrin nitrite. J. Org. Chem. 61, 6388–6395 (1996).

    Article  CAS  Google Scholar 

  30. Castro, C.E. & Oshea, S.K. Activation of nitrite ion by iron(III) porphyrins - stoichiometric oxygen-transfer to carbon, nitrogen, phosphorus, and sulfur. J. Org. Chem. 60, 1922–1923 (1995).

    Article  CAS  Google Scholar 

  31. Nasri, H., Ellison, M.K., Shang, M.Y., Schulz, C.E. & Scheidt, W.R. Variable pi-bonding in iron(ii) porphyrinates with nitrite, CO, and tert-butyl isocyanide: characterization of [Fe(TpivPP)(NO2)(CO)](-). Inorg. Chem. 43, 2932–2942 (2004).

    Article  CAS  Google Scholar 

  32. Lim, M.D. et al. Reactions of nitrogen oxides with heme models. Characterization of NO and NO2 dissociation from Fe(TPP)(NO2)(NO) by flash photolysis and rapid dilution techniques: Fe(TPP)(NO2) as an unstable intermediate. J. Am. Chem. Soc. 124, 9737–9743 (2002).

    Article  CAS  Google Scholar 

  33. Han, T.H., Hyduke, D.R., Vaughn, M.W., Fukuto, J.M. & Liao, J.C. Nitric oxide reaction with red blood cells and hemoglobin under heterogeneous conditions. Proc. Natl. Acad. Sci. USA 99, 7763–7768 (2002).

    Article  CAS  Google Scholar 

  34. Cooper, C.E. Nitric oxide and iron proteins. Biochim. Biophys. Acta 1411, 290–309 (1999).

    Article  CAS  Google Scholar 

  35. Hoshino, M., Maeda, M., Konishi, R., Seki, H. & Ford, P.C. Studies on the reaction mechanism for reductive nitrosylation of ferrihemoproteins in buffer solutions. J. Am. Chem. Soc. 118, 5702–5707 (1996).

    Article  CAS  Google Scholar 

  36. Lauer, T. et al. Plasma nitrite rather than nitrate reflects regional endothelial nitric oxide synthase activity but lacks intrinsic vasodilator action. Proc. Natl. Acad. Sci. USA 98, 12814–12819 (2001).

    Article  CAS  Google Scholar 

  37. Singel, D.J. & Stamler, J.S. Chemical physiology of blood flow regulation by red blood cells: the role of nitric oxide and S-nitrosohemoglobin. Annu. Rev. Physiol. 67, 99–145 (2005).

    Article  CAS  Google Scholar 

  38. Huang, K.T., Azarov, I., Basu, S., Huang, J. & Kim-Shapiro, D.B. Lack of allosterically controlled intramolecular transfer of nitric oxide from the heme to cysteine in the beta subunit of hemoglobin. Blood 107, 2602–2604 (2006).

    Article  CAS  Google Scholar 

  39. Doyle, M.P. & Hoekstra, J.W. Oxidation of nitrogen-oxides by bound dioxygen in hemoproteins. J. Inorg. Biochem. 14, 351–358 (1981).

    Article  CAS  Google Scholar 

  40. Eich, R.F. et al. Mechanism of NO-induced oxidation of myoglobin and hemoglobin. Biochemistry 35, 6976–6983 (1996).

    Article  CAS  Google Scholar 

  41. Herold, S., Exner, M. & Nauser, T. Kinetic and mechanistic studies of the NO center dot-mediated oxidation of oxymyoglobin and oxyhemoglobin. Biochemistry 40, 3385–3395 (2001).

    Article  CAS  Google Scholar 

  42. Kim-Shapiro, D.B. Hemoglobin-nitric oxide cooperativity: is NO the third respiratory ligand? Free Radic. Biol. Med. 36, 402–412 (2004).

    Article  CAS  Google Scholar 

  43. Copeland, D.M., Soares, A.S., West, A.H. & Richter-Addo, G.B. Crystal structures of the nitrite and nitric oxide complexes of horse heart myoglobin. J. Inorg. Biochem. 100, 1413–1425 (2006).

    Article  CAS  Google Scholar 

  44. Espey, M.G., Miranda, K.M., Thomas, D.D. & Wink, D.A. Distinction between nitrosating mechanisms within human cells and aqueous solution. J. Biol. Chem. 276, 30085–30091 (2001).

    Article  CAS  Google Scholar 

  45. Challis, B.C. & Kyrtopoulos, S.A. Chemistry of nitroso-compounds. 12. Mechanism of nitrosation and nitration of aqueous piperidine by gaseous dinitrogen tetraoxide and dinitrogen trioxide in aqueous alkaline-solutions - evidence for the existence of molecular isomers of dinitrogen tetraoxide and dinitrogen trioxide. J. Chem. Soc. [Perkin] 2, 1296–1302 (1978).

    Article  Google Scholar 

  46. Gladwin, M.T., Crawford, J.H. & Patel, R.P. The biochemistry of nitric oxide, nitrite, and hemoglobin: role in blood flow regulation. Free Radic. Biol. Med. 36, 707–717 (2004).

    Article  CAS  Google Scholar 

  47. Shiva, S. et al. Ceruloplasmin is a NO oxidase and nitrite synthase that determines endocrine NO homeostasis. Nat. Chem. Biol. 2, 486–493 (2006).

    Article  CAS  Google Scholar 

  48. Fang, K.Z., Ragsdale, N.V., Carey, R.M., MacDonald, T. & Gaston, B. Reductive assays for S-nitrosothiols: implications for measurements in biological systems. Biochem. Biophys. Res. Commun. 252, 535–540 (1998).

    Article  CAS  Google Scholar 

  49. Yang, B.K., Vivas, E.X., Reiter, C.D. & Gladwin, M.T. Methodologies for the sensitive and specific measurement of S-nitrosothiols, iron-nitrosyls, and nitrite in biological samples. Free Radic. Res. 37, 1–10 (2003).

    Article  CAS  Google Scholar 

  50. Handy, N.C. & Cohen, A.J. Left-right correlation energy. Mol. Phys. 99, 403–412 (2001).

    Article  CAS  Google Scholar 

  51. Lee, C.T., Yang, W.T. & Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Phys. Rev. B Condens. Matter 37, 785–789 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D.L.H. Williams for helpful discussion and for his seminal and pioneering work in nitrosation chemistry. This work was supported by US National Institutes of Health (NIH) grants HL58091 (D.B.K.-S.), GM55792 (N.H.) and HL62198 (S.B.K.). EPR spectrometry was facilitated by a grant from the North Carolina Biotechnology Center (2003-IDG-1013, D.B.K.-S.). D.B.K.-S. gratefully acknowledges further support from NIH grant K02 HL078706. A.G. thanks the Research Council of Norway for supercomputing time, and J.C. thanks the South African National Research Foundation for further support. M.T.G. is supported by the Division of Intramural Research of the US National Heart, Lung, and Blood Institute.

Author information

Authors and Affiliations

Authors

Contributions

The bulk of the experiments were performed by S.B. and R.G., who also helped in the design of these experiments and in writing the paper. A.G. and J.C. performed DFT calculations and wrote the text associated with these. D.B.K.-S. and M.T.G. directed the research, designed the experiments and wrote most of the paper. Significant other intellectual contributions (and some writing) were made by R.P., S.B.K and N.H. Other experiments were performed by J.H., A. Jeffers, A. Jiang, X.H., I.A., R.S., Z.H. and A.M.

Corresponding authors

Correspondence to Mark T Gladwin or Daniel B Kim-Shapiro.

Ethics declarations

Competing interests

R.P., M.T.G. and D.B.K.-S. are listed as coinventors on US National Institutes of Health government patent applications entitled “Use of Nitrite Salts for the Treatment of Cardiovascular Conditions” and “Nitrite-Methemoglobin therapy to detoxify stroma-free hemoglobin based blood substitutes.”

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Methods (PDF 410 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu, S., Grubina, R., Huang, J. et al. Catalytic generation of N2O3 by the concerted nitrite reductase and anhydrase activity of hemoglobin. Nat Chem Biol 3, 785–794 (2007). https://doi.org/10.1038/nchembio.2007.46

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2007.46

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing