Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Conserved mechanisms regulate outgrowth in zebrafish fins

Abstract

Regulation of size is one of the fundamental problems in biology. One general strategy has been to identify molecules required for cell growth and cell proliferation within an organ. This has been particularly revealing, identifying cell-autonomous pathways involved in cell growth, survival and proliferation. In order to identify pathways regulating overall limb growth and morphology, experiments have evaluated gene expression, transplanted and removed tissues, and knocked out genes. This work has provided a vast amount of information identifying molecular mechanisms regulating limb axis formation, outgrowth, and pattern formation. Using the zebrafish fin, genetic, cellular and molecular strategies have also been employed to follow both normal patterns of fin growth and growth in fin mutants. This review will focus on cellular and molecular regulation of the outgrowth and patterning of the zebrafish caudal fin during regeneration, and will emphasize similarities to other systems. Future perspectives describe opportunities using the zebrafish fin to reveal mechanisms underlying the regulation of final size.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tissues and structures in the zebrafish fin.
Figure 2: Establishment of signaling centers and initiation of outgrowth.
Figure 3: Bone patterning in the regenerating fin.
Figure 4: Conserved paradigms during limb growth.

Similar content being viewed by others

References

  1. Pueyo, J.I. & Couso, J.P. Parallels between the proximal-distal development of vertebrate and arthropod appendages: homology without an ancestor? Curr. Opin. Genet. Dev. 15, 439–446 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Shubin, N., Tabin, C. & Carroll, S. Fossils, genes and the evolution of animal limbs. Nature 388, 639–648 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Capdevila, J. & Johnson, R.L. Hedgehog signaling in vertebrate and invertebrate limb patterning. Cell. Mol. Life Sci. 57, 1682–1694 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Capdevila, J. & Izpisua Belmonte, J.C. Patterning mechanisms controlling vertebrate limb development. Annu. Rev. Cell Dev. Biol. 17, 87–132 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Amsterdam, A. & Hopkins, N. Mutagenesis strategies in zebrafish for identifying genes involved in development and disease. Trends Genet. 22, 473–478 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Lieschke, G.J. & Currie, P.D. Animal models of human disease: zebrafish swim into view. Nat. Rev. Genet. 8, 353–367 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. van Eeden, F.J. et al. Genetic analysis of fin formation in the zebrafish, Danio rerio. Development 123, 255–262 (1996).

    CAS  PubMed  Google Scholar 

  8. Amsterdam, A. & Hopkins, N. Retrovirus-mediated insertional mutagenesis in zebrafish. Methods Cell Biol. 60, 87–98 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Johnson, S.L. & Weston, J.A. Temperature-sensitive mutations that cause stage-specific defects in zebrafish fin regeneration. Genetics 141, 1583–1595 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Poss, K.D., Nechiporuk, A., Hillam, A.M., Johnson, S.L. & Keating, M.T. Mps1 defines a proximal blastemal proliferative compartment essential for zebrafish fin regeneration. Development 129, 5141–5149 (2002).

    CAS  PubMed  Google Scholar 

  11. Nabrit, S.M. The role of the fin rays in the regeneration in the tail-fins of fishes. Biol. Bull. 56, 235–266 (1929).

    Article  Google Scholar 

  12. Goss, R.J. & Stagg, M.W. The regeneration of fins and fin rays in fundulus heteroclitus. J. Exp. Zool. 137, 487–507 (1957).

    Article  Google Scholar 

  13. Laforest, L. et al. Involvement of the Sonic Hedgehog, patched 1 and bmp2 genes in patterning of the zebrafish dermal fin rays. Development 125, 4175–4184 (1998).

    CAS  PubMed  Google Scholar 

  14. Poss, K.D., Shen, J. & Keating, M.T. Induction of lef1 during zebrafish fin regeneration. Dev. Dyn. 219, 282–286 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Iovine, M.K., Higgins, E.P., Hindes, A., Coblitz, B. & Johnson, S.L. Mutations in connexin43 (GJA1) perturb bone growth in zebrafish fins. Dev. Biol. 278, 208–219 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Poss, K.D., Keating, M.T. & Nechiporuk, A. Tales of regeneration in zebrafish. Dev. Dyn. 226, 202–210 (2003).

    Article  PubMed  Google Scholar 

  17. Poleo, G., Brown, C.W., Laforest, L. & Akimenko, M.A. Cell proliferation and movement during early fin regeneration in zebrafish. Dev. Dyn. 221, 380–390 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Nechiporuk, A. & Keating, M.T. A proliferation gradient between proximal and msxb-expressing distal blastema directs zebrafish fin regeneration. Development 129, 2607–2617 (2002).

    CAS  PubMed  Google Scholar 

  19. Schebesta, M., Lien, C.L., Engel, F.B. & Keating, M.T. Transcriptional profiling of caudal fin regeneration in zebrafish. ScientificWorldJournal 6, 38–54 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Poss, K.D. et al. Roles for Fgf signaling during zebrafish fin regeneration. Dev. Biol. 222, 347–358 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Lee, Y., Grill, S., Sanchez, A., Murphy-Ryan, M. & Poss, K.D. Fgf signaling instructs position-dependent growth rate during zebrafish fin regeneration. Development 132, 5173–5183 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Thisse, B. & Thisse, C. Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev. Biol. 287, 390–402 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Stoick-Cooper, C.L. et al. Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development 134, 479–489 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Whitehead, G.G., Makino, S., Lien, C.-L. & Keating, M.T. fgf20 is essential for initiating zebrafish fin regeneration. Science 310, 1957–1960 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Thummel, R. et al. Inhibition of zebrafish fin regeneration using in vivo electroporation of morpholinos against fgfr1 and msxb. Dev. Dyn. 235, 336–346 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Makino, S. et al. Heat-shock protein 60 is required for blastema formation and maintenance during regeneration. Proc. Natl. Acad. Sci. USA 102, 14599–14604 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Smith, A., Avaron, F., Guay, D., Padhi, B.K. & Akimenko, M.A. Inhibition of BMP signaling during zebrafish fin regeneration disrupts fin growth and scleroblast differentiation and function. Dev. Biol. 299, 438–454 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Quint, E. et al. Bone patterning is altered in the regenerating zebrafish caudal fin after ectopic expression of sonic hedgehog and bmp2b or exposure to cyclopamine. Proc. Natl. Acad. Sci. USA 99, 8713–8718 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Martin, G. Making a vertebrate limb: new players enter from the wings. Bioessays 23, 865–868 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Martin, G.R. The roles of FGFs in the early development of vertebrate limbs. Genes Dev. 12, 1571–1586 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Dahn, R.D. & Fallon, J.F. Limbiting outgrowth: BMPs as negative regulators in limb development. Bioessays 21, 721–725 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Lepilina, A. et al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127, 607–619 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Iovine, M.K. & Johnson, S.L. Genetic analysis of isometric growth control mechanisms in the zebrafish caudal fin. Genetics 155, 1321–1329 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Paznekas, W.A. et al. Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am. J. Hum. Genet. 72, 408–418 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Hoptak-Solga, A.D., Klein, K.A., Derosa, A.M., White, T.W. & Iovine, M.K. Zebrafish short fin mutations in connexin43 lead to aberrant gap junctional intercellular communication. FEBS Lett. 581, 3297–3302 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author would like to thank A. Brands and K. Poss for comments and critiques of the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iovine, M. Conserved mechanisms regulate outgrowth in zebrafish fins. Nat Chem Biol 3, 613–618 (2007). https://doi.org/10.1038/nchembio.2007.36

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2007.36

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing