Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ceruloplasmin is a NO oxidase and nitrite synthase that determines endocrine NO homeostasis

Abstract

Nitrite represents a bioactive reservoir of nitric oxide (NO) that may modulate vasodilation, respiration and cytoprotection after ischemia-reperfusion injury. Although nitrite formation is thought to occur via reaction of NO with oxygen, this third-order reaction cannot compete kinetically with the reaction of NO with hemoglobin to form nitrate. Indeed, the formation of nitrite from NO in the blood is limited when plasma is substituted with physiological buffers, which suggests that plasma contains metal-based enzymatic pathways for nitrite synthesis. We therefore hypothesized that the multicopper oxidase, ceruloplasmin, could oxidize NO to NO+, with subsequent hydration to nitrite. Accordingly, plasma NO oxidase activity was decreased after ceruloplasmin immunodepletion, in ceruloplasmin knockout mice and in people with congenital aceruloplasminemia. Compared to controls, plasma nitrite concentrations were substantially reduced in ceruloplasmin knockout mice, which were more susceptible to liver infarction after ischemia and reperfusion. The extent of hepatocellular infarction normalized after nitrite repletion. These data suggest new functions for the multicopper oxidases in endocrine NO homeostasis and nitrite synthesis, and they support the hypothesis that physiological concentrations of nitrite contribute to hypoxic signaling and cytoprotection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plasma has NO oxidase activity.
Figure 2: Redox-sensitive proteins of high molecular weight are responsible for plasma NO oxidase activity.
Figure 3: Ceruloplasmin as an NO oxidase.
Figure 4: Ceruloplasmin is a plasma NO oxidase.
Figure 5: Ceruloplasmin deficiency results in decreased plasma nitrite.
Figure 6: Ceruloplasmin knockout mice sustain more I/R-induced injury than wild-type mice, and nitrite is cytoprotective.

Similar content being viewed by others

References

  1. Bryan, N.S. et al. Nitrite is a signaling molecule and regulator of gene expression in mammalian tissues. Nat. Chem. Biol. 1, 290–297 (2005).

    Article  CAS  Google Scholar 

  2. Cosby, K. et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat. Med. 9, 1498–1505 (2003).

    Article  CAS  Google Scholar 

  3. Crawford, J.H. et al. Hypoxia, red blood cells, and nitrite regulate NO-dependent hypoxic vasodilation. Blood 107, 566–574 (2006).

    Article  CAS  Google Scholar 

  4. Gladwin, M.T. et al. The emerging biology of the nitrite anion. Nat. Chem. Biol. 1, 308–314 (2005).

    Article  CAS  Google Scholar 

  5. Lundberg, J.O. & Weitzberg, E. NO generation from nitrite and its role in vascular control. Arterioscler. Thromb. Vasc. Biol. 25, 915–922 (2005).

    Article  CAS  Google Scholar 

  6. Li, H., Samouilov, A., Liu, X. & Zweier, J.L. Characterization of the magnitude and kinetics of xanthine oxidase-catalyzed nitrite reduction. Evaluation of its role in nitric oxide generation in anoxic tissues. J. Biol. Chem. 276, 24482–24489 (2001).

    Article  CAS  Google Scholar 

  7. Modin, A. et al. Nitrite-derived nitric oxide: a possible mediator of 'acidic-metabolic' vasodilation. Acta Physiol. Scand. 171, 9–16 (2001).

    CAS  PubMed  Google Scholar 

  8. Zweier, J.L., Wang, P., Samouilov, A. & Kuppusamy, P. Enzyme-independent formation of nitric oxide in biological tissues. Nat. Med. 1, 804–809 (1995).

    Article  CAS  Google Scholar 

  9. Nagababu, E., Ramasamy, S., Abernethy, D.R. & Rifkind, J.M. Active nitric oxide produced in the red cell under hypoxic conditions by deoxyhemoglobin-mediated nitrite reduction. J. Biol. Chem. 278, 46349–46356 (2003).

    Article  CAS  Google Scholar 

  10. Duranski, M.R. et al. Cytoprotective effects of nitrite during in vivo ischemia-reperfusion of the heart and liver. J. Clin. Invest. 115, 1232–1240 (2005).

    Article  CAS  Google Scholar 

  11. Webb, A. et al. Reduction of nitrite to nitric oxide during ischemia protects against myocardial ischemia-reperfusion damage. Proc. Natl. Acad. Sci. USA 101, 13683–13688 (2004).

    Article  CAS  Google Scholar 

  12. O'Donnell, V.B. et al. Nitration of unsaturated fatty acids by nitric oxide-derived reactive nitrogen species peroxynitrite, nitrous acid, nitrogen dioxide, and nitronium ion. Chem. Res. Toxicol. 12, 83–92 (1999).

    Article  CAS  Google Scholar 

  13. Hazen, S.L. et al. Formation of nitric oxide-derived oxidants by myeloperoxidase in monocytes: pathways for monocyte-mediated protein nitration and lipid peroxidation in vivo. Circ. Res. 85, 950–958 (1999).

    Article  CAS  Google Scholar 

  14. Bryan, N.S. et al. Cellular targets and mechanisms of nitros(yl)ation: an insight into their nature and kinetics in vivo. Proc. Natl. Acad. Sci. USA 101, 4308–4313 (2004).

    Article  CAS  Google Scholar 

  15. Huang, K.T. et al. The reaction between nitrite and deoxyhemoglobin. Reassessment of reaction kinetics and stoichiometry. J. Biol. Chem. 280, 31126–31131 (2005).

    Article  CAS  Google Scholar 

  16. Huang, Z. et al. Enzymatic function of hemoglobin as a nitrite reductase that produces NO under allosteric control. J. Clin. Invest. 115, 2099–2107 (2005).

    Article  CAS  Google Scholar 

  17. Dejam, A. et al. Erythrocytes are the major intravascular storage sites of nitrite in human blood. Blood 106, 734–739 (2005).

    Article  CAS  Google Scholar 

  18. Kleinbongard, P. et al. Plasma nitrite reflects constitutive nitric oxide synthase activity in mammals. Free Radic. Biol. Med. 35, 790–796 (2003).

    Article  CAS  Google Scholar 

  19. Kim-Shapiro, D.B., Schechter, A.N. & Gladwin, M.T. Unraveling the reactions of nitric oxide, nitrite, and hemoglobin in physiology and therapeutics. Arterioscler. Thromb. Vasc. Biol. 26, 697–705 (2006).

    Article  CAS  Google Scholar 

  20. Ford, P.C., Wink, D.A. & Stanbury, D.M. Autoxidation kinetics of aqueous nitric oxide. FEBS Lett. 326, 1–3 (1993).

    Article  CAS  Google Scholar 

  21. Wang, X. et al. Biological activity of nitric oxide in the plasmatic compartment. Proc. Natl. Acad. Sci. USA 101, 11477–11482 (2004).

    Article  CAS  Google Scholar 

  22. Lauer, T. et al. Direct biochemical evidence for eNOS stimulation by bradykinin in the human forearm vasculature. Basic Res. Cardiol. 98, 84–89 (2003).

    Article  CAS  Google Scholar 

  23. Zhang, Y. & Hogg, N. Mixing artifacts from the bolus addition of nitric oxide to oxymyoglobin: implications for S-nitrosothiol formation. Free Radic. Biol. Med. 32, 1212–1219 (2002).

    Article  CAS  Google Scholar 

  24. Rafikova, O., Rafikov, R. & Nudler, E. Catalysis of S-nitrosothiols formation by serum albumin: the mechanism and implication in vascular control. Proc. Natl. Acad. Sci. USA 99, 5913–5918 (2002).

    Article  CAS  Google Scholar 

  25. Hellman, N.E. & Gitlin, J.D. Ceruloplasmin metabolism and function. Annu. Rev. Nutr. 22, 439–458 (2002).

    Article  CAS  Google Scholar 

  26. Musci, G., Polticelli, F. & Calabrese, L. Structure/function relationships in ceruloplasmin. Adv. Exp. Med. Biol. 448, 175–182 (1999).

    Article  CAS  Google Scholar 

  27. Harris, Z.L. et al. Aceruloplasminemia: molecular characterization of this disorder of iron metabolism. Proc. Natl. Acad. Sci. USA 92, 2539–2543 (1995).

    Article  CAS  Google Scholar 

  28. Sarkar, J., Seshadri, V., Tripoulas, N.A., Ketterer, M.E. & Fox, P.L. Role of ceruloplasmin in macrophage iron efflux during hypoxia. J. Biol. Chem. 278, 44018–44024 (2003).

    Article  CAS  Google Scholar 

  29. Osaki, S., Johnson, D.A. & Frieden, E. The possible significance of the ferrous oxidase activity of ceruloplasmin in normal human serum. J. Biol. Chem. 241, 2746–2751 (1966).

    CAS  PubMed  Google Scholar 

  30. Torres, J. & Wilson, M.T. The reactions of copper proteins with nitric oxide. Biochim. Biophys. Acta 1411, 310–322 (1999).

    Article  CAS  Google Scholar 

  31. Inoue, K. et al. Nitrosothiol formation catalyzed by ceruloplasmin. Implication for cytoprotective mechanism in vivo. J. Biol. Chem. 274, 27069–27075 (1999).

    Article  CAS  Google Scholar 

  32. Hughes, M.N. Relationships between nitric oxide, nitroxyl ion, nitrosonium cation and peroxynitrite. Biochim. Biophys. Acta 1411, 263–272 (1999).

    Article  CAS  Google Scholar 

  33. Meyer, L.A., Durley, A.P., Prohaska, J.R. & Harris, Z.L. Copper transport and metabolism are normal in aceruloplasminemic mice. J. Biol. Chem. 276, 36857–36861 (2001).

    Article  CAS  Google Scholar 

  34. Miyajima, H. Aceruloplasminemia, an iron metabolic disorder. Neuropathology 23, 345–350 (2003).

    Article  Google Scholar 

  35. Harris, Z.L. Aceruloplasminemia. J. Neurol. Sci. 207, 108–109 (2003).

    Article  Google Scholar 

  36. Xu, X., Pin, S., Gathinji, M., Fuchs, R. & Harris, Z.L. Aceruloplasminemia: an inherited neurodegenerative disease with impairment of iron homeostasis. Ann. NY Acad. Sci. 1012, 299–305 (2004).

    Article  CAS  Google Scholar 

  37. Yoshida, K. et al. Increased lipid peroxidation in the brains of aceruloplasminemia patients. J. Neurol. Sci. 175, 91–95 (2000).

    Article  CAS  Google Scholar 

  38. Harada, H. et al. Selected contribution: effects of gender on reduced-size liver ischemia and reperfusion injury. J. Appl. Physiol. 91, 2816–2822 (2001).

    Article  CAS  Google Scholar 

  39. Fox, P.L., Mukhopadhyay, C. & Ehrenwald, E. Structure, oxidant activity, and cardiovascular mechanisms of human ceruloplasmin. Life Sci. 56, 1749–1758 (1995).

    Article  CAS  Google Scholar 

  40. Gitlin, J.D. Transcriptional regulation of ceruloplasmin gene expression during inflammation. J. Biol. Chem. 263, 6281–6287 (1988).

    CAS  PubMed  Google Scholar 

  41. Torres, J., Sharpe, M.A., Rosquist, A., Cooper, C.E. & Wilson, M.T. Cytochrome c oxidase rapidly metabolises nitric oxide to nitrite. FEBS Lett. 475, 263–266 (2000).

    Article  CAS  Google Scholar 

  42. Martin, F. et al. Copper-dependent activation of hypoxia-inducible factor (HIF)-1: implications for ceruloplasmin regulation. Blood 105, 4613–4619 (2005).

    Article  CAS  Google Scholar 

  43. Mukhopadhyay, C.K., Mazumder, B. & Fox, P.L. Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency. J. Biol. Chem. 275, 21048–21054 (2000).

    Article  CAS  Google Scholar 

  44. Singh, T.K. Serum ceruloplasmin in acute myocardial infarction. Acta Cardiol. 47, 321–329 (1992).

    CAS  PubMed  Google Scholar 

  45. Ehrenwald, E., Chisolm, G.M. & Fox, P.L. Intact human ceruloplasmin oxidatively modifies low density lipoprotein. J. Clin. Invest. 93, 1493–1501 (1994).

    Article  CAS  Google Scholar 

  46. Fox, P.L., Mazumder, B., Ehrenwald, E. & Mukhopadhyay, C.K. Ceruloplasmin and cardiovascular disease. Free Radic. Biol. Med. 28, 1735–1744 (2000).

    Article  CAS  Google Scholar 

  47. Miyajima, H., Takahashi, Y., Serizawa, M., Kaneko, E. & Gitlin, J.D. Increased plasma lipid peroxidation in patients with aceruloplasminemia. Free Radic. Biol. Med. 20, 757–760 (1996).

    Article  CAS  Google Scholar 

  48. Miyajima, H. et al. Increased very long-chain fatty acids in erythrocyte membranes of patients with aceruloplasminemia. Neurology 50, 130–136 (1998).

    Article  CAS  Google Scholar 

  49. Miyajima, H. et al. Increased oxysterols associated with iron accumulation in the brains and visceral organs of acaeruloplasminaemia patients. QJM 94, 417–422 (2001).

    Article  CAS  Google Scholar 

  50. Yang, B.K., Vivas, E.X., Reiter, C.D. & Gladwin, M.T. Methodologies for the sensitive and specific measurement of S-nitrosothiols, iron-nitrosyls, and nitrite in biological samples. Free Radic. Res. 37, 1–10 (2003).

    Article  CAS  Google Scholar 

  51. Lim, M.D., Lorkovic, I.M. & Ford, P.C. The preparation of anaerobic nitric oxide solutions for the study of heme model systems in aqueous and nonaqueous media: some consequences of NO x impurities. Methods Enzymol. 396, 3–17 (2005).

    Article  CAS  Google Scholar 

  52. Sunderman, F.W., Jr & Nomoto, S. Measurement of human serum ceruloplasmin by its p-phenylenediamine oxidase activity. Clin. Chem. 16, 903–910 (1970).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank D. Lefer and M. Duranski for generous instruction in the performance of the hepatic I/R protocol. We thank P. Fox for helpful discussions about ceruloplasmin.

Author information

Authors and Affiliations

Authors

Contributions

S.S., acquisition, analysis and interpretation of data, and drafting and revision of the manuscript; X.W., L.A.R., X.X., S.Y. and V.A., acquisition of data; H.M., supplying of critical samples; N.H., acquisition, analysis and interpretation of data; Z.L.H. and M.T.G., analysis and interpretation of data, and drafting and critical review of the manuscript.

Corresponding author

Correspondence to Mark T Gladwin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiva, S., Wang, X., Ringwood, L. et al. Ceruloplasmin is a NO oxidase and nitrite synthase that determines endocrine NO homeostasis. Nat Chem Biol 2, 486–493 (2006). https://doi.org/10.1038/nchembio813

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio813

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing