Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Allosteric inhibition of kinesin-5 modulates its processive directional motility

Abstract

Small-molecule inhibitors of kinesin-5 (refs. 13), a protein essential for eukaryotic cell division4, represent alternatives to antimitotic agents that target tubulin5,6. While tubulin is needed for multiple intracellular processes, the known functions of kinesin-5 are limited to dividing cells, making it likely that kinesin-5 inhibitors would have fewer side effects than do tubulin-targeting drugs. Kinesin-5 inhibitors, such as monastrol1, act through poorly understood allosteric mechanisms, not competing with ATP binding7,8. Moreover, the microscopic mechanism of full-length kinesin-5 motility is not known. Here we characterize the motile properties and allosteric inhibition of Eg5, a vertebrate kinesin-5, using a GFP fusion protein in single-molecule fluorescence assays9. We find that Eg5 is a processive kinesin whose motility includes, in addition to ATP-dependent directional motion, a diffusive component not requiring ATP hydrolysis. Monastrol suppresses the directional processive motility of microtubule-bound Eg5. These data on Eg5's allosteric inhibition will impact these inhibitors' use as probes and development as chemotherapeutic agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recombinant Eg5-GFP is a homotetramer and can functionally replace endogenous Eg5.
Figure 2: Full-length tetrameric Eg5 is a processive kinesin.
Figure 3: Monastrol decreases the speed and enhances microtubule-bound diffusive motion of individual Eg5 molecules.
Figure 4: The microtubule-bound diffusive motion of individual Eg5 molecules does not need ATP hydrolysis.

Similar content being viewed by others

References

  1. Mayer, T.U. et al. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286, 971–974 (1999).

    Article  CAS  Google Scholar 

  2. Cox, C.D. et al. Kinesin spindle protein (KSP) inhibitors. Part 1: The discovery of 3,5-diaryl-4,5-dihydropyrazoles as potent and selective inhibitors of the mitotic kinesin KSP. Bioorg. Med. Chem. Lett. 15, 2041–2045 (2005).

    Article  CAS  Google Scholar 

  3. DeBonis, S. et al. In vitro screening for inhibitors of the human mitotic kinesin Eg5 with antimitotic and antitumor activities. Mol. Cancer Ther. 3, 1079–1090 (2004).

    CAS  PubMed  Google Scholar 

  4. Sharp, D.J., Rogers, G.C. & Scholey, J.M. Microtubule motors in mitosis. Nature 407, 41–47 (2000).

    Article  CAS  Google Scholar 

  5. Jordan, M.A. & Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer 4, 253–265 (2004).

    Article  CAS  Google Scholar 

  6. Bergnes, G., Brejc, K. & Belmont, L. Mitotic kinesins: prospects for antimitotic drug discovery. Curr. Top. Med. Chem. 5, 127–145 (2005).

    Article  CAS  Google Scholar 

  7. Maliga, Z., Kapoor, T.M. & Mitchison, T.J. Evidence that monastrol is an allosteric inhibitor of the mitotic kinesin Eg5. Chem. Biol. 9, 989–996 (2002).

    Article  CAS  Google Scholar 

  8. Yan, Y. et al. Inhibition of a mitotic motor protein: where, how, and conformational consequences. J. Mol. Biol. 335, 547–554 (2004).

    Article  CAS  Google Scholar 

  9. Peterman, E.J., Sosa, H. & Moerner, W.E. Single-molecule fluorescence spectroscopy and microscopy of biomolecular motors. Annu. Rev. Phys. Chem. 55, 79–96 (2004).

    Article  CAS  Google Scholar 

  10. Sawin, K.E., LeGuellec, K., Philippe, M. & Mitchison, T.J. Mitotic spindle organization by a plus-end-directed microtubule motor. Nature 359, 540–543 (1992).

    Article  CAS  Google Scholar 

  11. Kashina, A.S. et al. A bipolar kinesin. Nature 379, 270–272 (1996).

    Article  CAS  Google Scholar 

  12. Kapitein, L.C. et al. The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature 435, 114–118 (2005).

    Article  CAS  Google Scholar 

  13. Desai, A., Murray, A., Mitchison, T.J. & Walczak, C.E. The use of Xenopus egg extracts to study mitotic spindle assembly and function in vitro. Methods Cell Biol. 61, 385–412 (1999).

    Article  CAS  Google Scholar 

  14. Kwok, B.H., Yang, J.G. & Kapoor, T.M. The rate of bipolar spindle assembly depends on the microtubule-gliding velocity of the mitotic kinesin Eg5. Curr. Biol. 14, 1783–1788 (2004).

    Article  CAS  Google Scholar 

  15. Kapoor, T.M. & Mitchison, T.J. Eg5 is static in bipolar spindles relative to tubulin: evidence for a static spindle matrix. J. Cell Biol. 154, 1125–1133 (2001).

    Article  CAS  Google Scholar 

  16. Sharp, D.J. et al. The bipolar kinesin, KLP61F, cross-links microtubules within interpolar microtubule bundles of Drosophila embryonic mitotic spindles. J. Cell Biol. 144, 125–138 (1999).

    Article  CAS  Google Scholar 

  17. Dickson, R.M., Cubitt, A.B., Tsien, R.Y. & Moerner, W.E. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388, 355–358 (1997).

    Article  CAS  Google Scholar 

  18. Peterman, E.J., Brasselet, S. & Moerner, W.E. The fluorescence dynamics of single molecules of green fluorescent protein. J. Phys. Chem. A 103, 10553–10560 (1999).

    Article  CAS  Google Scholar 

  19. Qian, H., Sheetz, M.P. & Elson, E.L. Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys. J. 60, 910–921 (1991).

    Article  CAS  Google Scholar 

  20. Saxton, M.J. Single-particle tracking: the distribution of diffusion coefficients. Biophys. J. 72, 1744–1753 (1997).

    Article  CAS  Google Scholar 

  21. Svoboda, K., Mitra, P.P. & Block, S.M. Fluctuation analysis of motor protein movement and single enzyme kinetics. Proc. Natl. Acad. Sci. USA 91, 11782–11786 (1994).

    Article  CAS  Google Scholar 

  22. Okada, Y. & Hirokawa, N. Mechanism of the single-headed processivity: diffusional anchoring between the K-loop of kinesin and the C terminus of tubulin. Proc. Natl. Acad. Sci. USA 97, 640–645 (2000).

    Article  CAS  Google Scholar 

  23. Okada, Y. & Hirokawa, N. A processive single-headed motor: kinesin superfamily protein KIF1A. Science 283, 1152–1157 (1999).

    Article  CAS  Google Scholar 

  24. Helenius, J., Brouhard, G., Kalaidzidis, Y., Diez, S. & Howard, J. The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends. Nature 441, 115–119 (2006).

    Article  CAS  Google Scholar 

  25. Cochran, J.C., Gatial, J.E., III, Kapoor, T.M. & Gilbert, S.P. Monastrol inhibition of the mitotic kinesin Eg5. J. Biol. Chem. 280, 12658–12667 (2005).

    Article  CAS  Google Scholar 

  26. Krzysiak, T.C. et al. A structural model for monastrol inhibition of dimeric kinesin Eg5. EMBO J. 25, 2263–2273 (2006).

    Article  CAS  Google Scholar 

  27. Turner, J. et al. Crystal structure of the mitotic spindle kinesin Eg5 reveals a novel conformation of the neck-linker. J. Biol. Chem. 276, 25496–25502 (2001).

    Article  CAS  Google Scholar 

  28. Crevel, I.M., Alonso, M.C. & Cross, R.A. Monastrol stabilises an attached low-friction mode of Eg5. Curr. Biol. 14, R411–R412 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Woehlke and U. Peters for Nkin-GFP and DHP2, respectively. Support was provided in part by a Research Grant from the Human Frontier Science Program (C.F.S. and T.M.K.). C.F.S. acknowledges the Foundation for Fundamental Research on Matter and the DFG Center Molecular Physiology of the Brain. L.C.K. and E.J.G.P. are grateful for a VIDI fellowship (E.J.G.P.) from the Research Council for Earth and Life Sciences (ALW), with financial aid from the Netherlands Organization for Scientific Research (NWO). T.M.K., B.H.K., J.H.K. are grateful to the US National Institutes of Health/National Institute of General Medical Sciences (GM65933) for support. B.H.K. is a Merck postdoctoral fellow.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Erwin J G Peterman or Tarun M Kapoor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Purification of TEV protease-cleaved Eg5-GFP fusion protein. (PDF 308 kb)

Supplementary Fig. 2

Eg5-GFP can functionally replace endogenous Eg5 motor. (PDF 176 kb)

Supplementary Fig. 3

Position traces of microtubule-bound Eg5-GFP over time. (PDF 210 kb)

Supplementary Fig. 4

Chemical structure of DHP2, 2. (PDF 160 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwok, B., Kapitein, L., Kim, J. et al. Allosteric inhibition of kinesin-5 modulates its processive directional motility. Nat Chem Biol 2, 480–485 (2006). https://doi.org/10.1038/nchembio812

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio812

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing