Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sulfation patterns of glycosaminoglycans encode molecular recognition and activity

Abstract

Although glycosaminoglycans contribute to diverse physiological processes1,2,3,4, an understanding of their molecular mechanisms has been hampered by the inability to access homogeneous glycosaminoglycan structures. Here, we assembled well-defined chondroitin sulfate oligosaccharides using a convergent, synthetic approach that permits installation of sulfate groups at precise positions along the carbohydrate backbone. Using these defined structures, we demonstrate that specific sulfation motifs function as molecular recognition elements for growth factors and modulate neuronal growth. These results provide both fundamental insights into the role of sulfation and direct evidence for a 'sulfation code' whereby glycosaminoglycans encode functional information in a sequence-specific manner analogous to that of DNA, RNA and proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A specific sulfation pattern promotes the interaction of CS with neuronal growth factors.
Figure 2: The sulfation pattern directs the neuritogenic activity of CS.
Figure 3: The CS-E sulfation motif stimulates neuronal growth through activation of the midkine-PTPζ and BDNF-TrkB signaling pathways.

Similar content being viewed by others

References

  1. Hacker, U., Nybakken, K. & Perrimon, N. Heparan sulphate proteoglycans: the sweet side of development. Nat. Rev. Mol. Cell Biol. 6, 530–541 (2005).

    Article  Google Scholar 

  2. Capila, I. & Linhardt, R.J. Heparin-protein interactions. Angew. Chem. Int. Edn Engl. 41, 391–412 (2002).

    Article  Google Scholar 

  3. Sasisekharan, R., Shriver, Z., Venkataraman, G. & Narayanasami, U. Roles of heparan-sulphate glycosaminoglycans in cancer. Nat. Rev. Cancer 2, 521–528 (2002).

    Article  CAS  Google Scholar 

  4. Bradbury, E.J. et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416, 636–640 (2002).

    Article  CAS  Google Scholar 

  5. Kitagawa, H., Tsutsumi, K., Tone, Y. & Sugahara, K. Developmental regulation of the sulfation profile of chondroitin sulfate chains in the chicken embryo brain. J. Biol. Chem. 272, 31377–31381 (1997).

    Article  CAS  Google Scholar 

  6. Plaas, A.H.K., West, L.A., Wong-Palms, S. & Nelson, F.R.T. Glycosaminoglycan sulfation in human osteoarthritis. Disease-related alterations at the non-reducing termini of chondroitin and dermatan sulfate. J. Biol. Chem. 273, 12642–12649 (1998).

    Article  CAS  Google Scholar 

  7. Holt, C.E. & Dickson, B.J. Sugar codes for axons? Neuron 46, 169–172 (2005).

    Article  CAS  Google Scholar 

  8. Nandini, C.D. et al. Structural and functional characterization of oversulfated chondroitin sulfate/dermatan sulfate hybrid chains from the notochord of hagfish. Neuritogenic and binding activities for growth factors and neurotrophic factors. J. Biol. Chem. 279, 50799–50809 (2004).

    Article  CAS  Google Scholar 

  9. Ueoka, C. et al. Neuronal cell adhesion, mediated by the heparin-binding neuroregulatory factor midkine, is specifically inhibited by chondroitin sulfate E. Structural and functional implications of the over-sulfated chondroitin sulfate. J. Biol. Chem. 275, 37407–37413 (2000).

    Article  CAS  Google Scholar 

  10. Shuo, T. et al. Developmental changes in the biochemical and immunological characters of the carbohydrate moiety of neuroglycan C, a brain-specific chondroitin sulfate proteoglycan. Glycoconj. J. 20, 267–278 (2004).

    Article  CAS  Google Scholar 

  11. Tsuchida, K. et al. Appican, the proteoglycan form of the amyloid precursor protein, contains chondroitin sulfate E in the repeating disaccharide region and 4-O-sulfated galactose in the linkage region. J. Biol. Chem. 276, 37155–37160 (2001).

    Article  CAS  Google Scholar 

  12. Deepa, S.S., Yamada, S., Zako, M., Goldberger, O. & Sugahara, K. Chondroitin sulfate chains on syndecan-1 and syndecan-4 from normal murine mammary gland epithelial cells are structurally and functionally distinct and cooperate with heparan sulfate chains to bind growth factors. A novel function to control binding of midkine, pleiotrophin, and basic fibroblast growth factor. J. Biol. Chem. 279, 37368–37376 (2004).

    Article  CAS  Google Scholar 

  13. Karst, N.A. & Linhardt, R.J. Recent chemical and enzymatic approaches to the synthesis of glycosaminoglycan oligosaccharides. Curr. Med. Chem. 10, 1993–2031 (2003).

    Article  CAS  Google Scholar 

  14. Tully, S.E. et al. A chondroitin sulfate small molecule that stimulates neuronal growth. J. Am. Chem. Soc. 126, 7736–7737 (2004).

    Article  CAS  Google Scholar 

  15. Jacquinet, J.-C., Rochepeau-Jobron, L. & Combal, J.-P. Multigram syntheses of the disaccharide repeating units of chondroitin 4- and 6-sulfates. Carbohydr. Res. 314, 283–288 (1998).

    Article  CAS  Google Scholar 

  16. Brickman, Y.G. et al. Structural modification of fibroblast growth factor-binding heparan sulfate at a determinative stage of neural development. J. Biol. Chem. 273, 4350–4359 (1998).

    Article  CAS  Google Scholar 

  17. Kantor, D.B. et al. Semaphorin 5A is a bifunctional axon guidance cue regulated by heparan and chondroitin sulfate proteoglycans. Neuron 44, 961–975 (2004).

    Article  CAS  Google Scholar 

  18. Mayo, S.L., Olafson, B.D. & Goddard, W.A., III DREIDING: A generic force field for molecular simulations. J. Phys. Chem. 94, 8897–8909 (1990).

    Article  CAS  Google Scholar 

  19. Rappe, A.K. & Goddard, W.A., III Charge equilibration for molecular dynamics simulations. J. Phys. Chem. 95, 3358–3363 (1991).

    Article  CAS  Google Scholar 

  20. Lim, K.-T. et al. Molecular dynamics for very large systems on massively parallel computers: the MPSim program. J. Comput. Chem. 18, 501–521 (1997).

    Article  CAS  Google Scholar 

  21. Feizi, T., Fazio, F., Chai, W. & Wong, C.H. Carbohydrate microarrays—a new set of technologies at the frontiers of glycomics. Curr. Opin. Struct. Biol. 13, 637–645 (2003).

    Article  CAS  Google Scholar 

  22. de Paz, J.L., Noti, C. & Seeberger, P.H. Microarrays of synthetic heparin oligosaccharides. J. Am. Chem. Soc. 128, 2766–2767 (2006).

    Article  CAS  Google Scholar 

  23. Park, S., Lee, M.R., Pyo, S.J. & Shin, I. Carbohydrate chips for studying high-throughput carbohydrate-protein interactions. J. Am. Chem. Soc. 126, 4812–4819 (2004).

    Article  CAS  Google Scholar 

  24. Muramatsu, T. Midkine and pleiotrophin: two related proteins involved in development, survival, inflammation and tumorigenesis. J. Biochem. 132, 359–371 (2002).

    Article  CAS  Google Scholar 

  25. Herndon, M.E., Stipp, C.S. & Lander, A.D. Interactions of neural glycosaminoglycans and proteoglycans with protein ligands: assessment of selectivity, heterogeneity and the participation of core proteins in binding. Glycobiology 9, 143–155 (1999).

    Article  CAS  Google Scholar 

  26. Huang, E.J. & Reichardt, L.F. Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677–736 (2001).

    Article  CAS  Google Scholar 

  27. Bicknese, A.R., Sheppard, A.M., O'Leary, D.D. & Pearlman, A.L. Thalamocortical axons extend along a chondroitin sulfate proteoglycan-enriched pathway coincident with the neocortical subplate and distinct from the efferent path. J. Neurosci. 14, 3500–3510 (1994).

    Article  CAS  Google Scholar 

  28. Jiang, B., Akaneya, Y., Hata, Y. & Tsumoto, T. Long-term depression is not induced by low-frequency stimulation in rat visual cortex in vivo: a possible preventing role of endogenous brain-derived neurotrophic factor. J. Neurosci. 23, 3761–3770 (2003).

    Article  CAS  Google Scholar 

  29. Seil, F.J. & Drake-Baumann, R. TrkB receptor ligands promote activity-dependent inhibitory synaptogenesis. J. Neurosci. 20, 5367–5373 (2000).

    Article  CAS  Google Scholar 

  30. Skoff, A.M. & Adler, J.E. Nerve growth factor regulates substance P in adult sensory neurons through both TrkA and p75 receptors. Exp. Neurol. 197, 430–436 (2006).

    Article  CAS  Google Scholar 

  31. Bellaiche, Y., The, I. & Perrimon, N. Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion. Nature 394, 85–88 (1998).

    Article  CAS  Google Scholar 

  32. Fernaud-Espinosa, I., Nieto-Sampedro, M. & Bovolenta, P. Developmental distribution of glycosaminoglycans in embryonic rat brain: relationship to axonal tract formation. J. Neurobiol. 30, 410–424 (1996).

    Article  CAS  Google Scholar 

  33. Greeley, B.H. et al. New pseudospectral algorithms for electronic structure calculations: length scale separation and analytical two-electron integral corrections. J. Chem. Phys. 101, 4028–4041 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V.W.T. Kam for assistance with modifying the Dreiding force field; R.H. Grubbs for the catalyst; C.J. Rogers for assistance with data analysis; J.L. Riechmann, director of the Millard and Muriel Jacobs Genetic and Genomics Laboratory at Caltech, for assistance with printing the microarrays; S. Ou in the Caltech Monoclonal Antibody Facility; and the Biological Imaging Center and Environmental Analysis Center at Caltech for instrumentation. This work was supported by the American Cancer Society (RSG-05-106-01-CDD), Human Frontiers Science Program, Tobacco-Related Disease Research Program (14RT-0034), National Institutes of Health (RO1 NS045061, C.I.G. and L.C.H.-W.), National Science Foundation (S.E.T.) and Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

C.I.G. and S.E.T. contributed equally to this work.

Corresponding author

Correspondence to Linda C Hsieh-Wilson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Each CS tetrasaccharide favors a distinct set of torsion angles: torsion plots for ψ1 and φ1. (PDF 656 kb)

Supplementary Fig. 2

Each CS tetrasaccharide favors a distinct set of torsion angles: torsion plots for ψ2 and φ2. (PDF 586 kb)

Supplementary Fig. 3

Each CS tetrasaccharide favors a distinct set of torsion angles: torsion plots for ψ3 and φ3. (PDF 587 kb)

Supplementary Fig. 4

Each CS tetrasaccharide presents a unique van der Waals surface. (PDF 35 kb)

Supplementary Fig. 5

Monoclonal antibody 5D2-2C2 (raised against CS-C) selectively recognizes the CS-C tetrasaccharide. (PDF 44 kb)

Supplementary Fig. 6

Antibodies against BDNF or midkine, but not control IgG antibodies, block the binding of BDNF or midkine to CS-E on the microarray. (PDF 49 kb)

Supplementary Fig. 7

Function-blocking antibodies against BDNF and TrkB, but not class-matched control antibodies, disrupt the neuritogenic activity of CS-E. (PDF 47 kb)

Supplementary Methods

Experimental procedures for the synthesis of CS tetrasaccharides 1, 2, 3 and 4, conjugation methods for preparing carbohydrate microarrays, and dot blot procedures. (PDF 380 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gama, C., Tully, S., Sotogaku, N. et al. Sulfation patterns of glycosaminoglycans encode molecular recognition and activity. Nat Chem Biol 2, 467–473 (2006). https://doi.org/10.1038/nchembio810

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio810

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing