Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Volume 2 Issue 8, August 2006

Coupling ligand structure to specific conformational switches in the β2 adrenoceptor. Yao et al. (p 417) showed that activation of the G protein-coupled receptor β2-AR is accompanied by at least two distinct molecular switches. The 'ionic lock' that holds together two of the transmembrane domains (red and blue) is broken upon receptor activation. Both the ionic lock switch and a 'rotamer toggle switch', which modulates helix conformation around a conserved proline kink, are required for full receptor activation (see also News & Views by Vilardaga, p 395). The authors examined the effect of agonist structure on activation of these molecular switches. Cover art by Erin Boyle based on imagery of β2-AR and small-molecule agonists provided by Charles Parnot and Xavier Deupi.

Editorial

Top of page ⤴

Meeting Report

  • Chemical biology is an interdisciplinary field that is undergoing rapid expansion around the globe. Recently, the Japanese Society for Chemical Biology sponsored its inaugural scientific meeting to discuss research at the interface of chemistry and biology.

    • Kazuya Kikuchi
    • Hideaki Kakeya
    Meeting Report
Top of page ⤴

News & Views

  • Specialized transmembrane proteins known as G protein–coupled receptors (GPCRs) serve as universal cell surface switches to transmit hormones, neurotransmitter and other extracellular chemical signals into cells. Testing ligands of different efficacies reveals two independent modes of receptor switching.

    • Jean-Pierre Vilardaga
    News & Views
  • Sphingosine 1-phosphate (S1P), a lysophospholipid and known immune regulator, stimulates distinct signaling pathways. A specific S1P antagonist that can be used systemically for the first time provides an indispensable tool for elucidating the therapeutic potential of the S1P signaling pathway.

    • Carsten Schultz
    News & Views
  • Genetic manipulation of biosynthetic pathways is a useful method for producing analogs of complex bioactive metabolites, but this technique can be challenging when performed in the natural producer of the target compounds. Reconstruction of biosynthetic gene clusters in E. coli could be the key to rapid heterologous production of natural products and genetic manipulation of their biosynthetic pathways.

    • Gregory L Challis
    News & Views
  • Though uptake of beneficial foreign DNA confers fitness advantages to bacteria, the mechanisms protecting bacteria from harmful foreign DNA have been unclear. A new study suggests that the H-NS protein transcriptionally silences invading DNA by recognizing its low G-C content, thereby protecting cell viability during bacterial evolution.

    • Mary Kay H Pflum
    News & Views
  • Enzymatic conversion of sphingomyelin to ceramide-1-phosphate in the external leaflet of the cellular membrane has now been shown to markedly facilitate opening of classical voltage-activated potassium channels. This discovery raises the possibility that lipids may have more prominent roles in the gating mechanism of these important ion channels than was previously appreciated.

    • Kenton J Swartz
    News & Views
Top of page ⤴

Perspective

Top of page ⤴

Brief Communication

Top of page ⤴

Letter

Top of page ⤴

Article

Top of page ⤴

In This Issue

Top of page ⤴

Search

Quick links