Chemical regulation of angiogenesis in adult zebrafish. Bayliss et al. (p 265) developed a regenerative angiogenesis assay in the tail fin of adult zebrafish (Danio rerio). In the assay, a kinase inhibitor (PTK787) blocked angiogenesis in adult caudal fins. Vascular endothelial growth factor receptor (VEGFR) signaling was required for blood vessel regeneration, but bone and tissue growth were unaffected by this chemical inhibitor.

The study offers a way to discover genes and biochemical mechanisms involved in angiogenesis and a method for the identification and evaluation of anti-angiogenic compounds (see also News and Views by De Smet, Carmeliet and Autiero, p 228). Cover art by Erin Boyle, based on an image of a zebrafish tail fin that has undergone regeneration, provided by Heather Robbins.
LETTERS

249 Elevated levels of oxidized cholesterol metabolites in Lewy body disease brains accelerate \(\alpha \)-synuclein fibrilization
D A Bosco, D M Fowler, Q Zhang, J Nieva, E T Powers, P Wentworth, Jr, R A Lerner & J W Kelly

\[
\text{α-Synuclein} + \text{(3)} \rightarrow \text{α-Synuclein fibrils}
\]

254 Functional epitopes at the ribosome subunit interface
O Rackham, K Wang & J W Chin
▶ see also p 231

259 Atomic resolution crystallography reveals how changes in pH shape the protein microenvironment
A Y Lyubimov, P I Lario, I Moustafa & A Vrielink

© 2006 Nature Publishing Group http://www.nature.com/naturechemicalbiology
ARTICLES

265 Chemical modulation of receptor signaling inhibits regenerative angiogenesis in adult zebrafish
► see also p 228

274 Proteomic profiling of metalloprotease activities with cocktails of active-site probes
S A Sieber, S Niessen, H S Hoover & B F Cravatt
► see also p 229

NATURE CHEMICAL BIOLOGY CLASSIFIED

See back pages.