Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Rethinking 'secondary' metabolism: physiological roles for phenazine antibiotics

A Corrigendum to this article was published on 01 April 2006

This article has been updated

Abstract

Microorganisms exist in the environment as multicellular communities that face the challenge of surviving under nutrient-limited conditions. Chemical communication is an essential part of the way in which these populations coordinate their behavior, and there has been an explosion of understanding in recent years regarding how this is accomplished. Much less, however, is understood about the way these communities sustain their metabolism. Bacteria of the genus Pseudomonas are ubiquitous, and are distinguished by their production of colorful secondary metabolites called phenazines. In this article, we suggest that phenazines, which are produced under conditions of high cell density and nutrient limitation, may be important for the persistence of pseudomonads in the environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phenazines are colorful, diffusible bacterial metabolites.
Figure 2: Pseudomonads stimulate phenazine reduction.
Figure 3: Model of the quorum-sensing network in Pseudomonas aeruginosa.
Figure 4: Key structural elements of secondary metabolites resemble those of cofactors that have critical roles in energy metabolism.

Similar content being viewed by others

Change history

  • 07 March 2006

    In the version of this article initially published, some of the values in Table 1 were incorrect and three chemical names were misspelled. The errors have been corrected in the PDF version of the article.

Notes

  1. *Note: In the version of this article initially published, some of the values in Table 1 were incorrect and three chemical names were misspelled. The errors have been corrected in the PDF version of the article.

References

  1. Madigan, M.T., Martinko, J.M. & Parker, J. Brock Biology of Microorganisms (Prentice-Hall, Upper Saddle River, NJ, USA, 2000).

    Google Scholar 

  2. Vining, L.C. Functions of secondary metabolites. Annu. Rev. Microbiol. 44, 395–427 (1990).

    CAS  PubMed  Google Scholar 

  3. Firn, R.D. & Jones, C.D. Natural products—a simple model to explain chemical diversity. Nat. Prod. Rep. 20, 382–391 (2003).

    CAS  PubMed  Google Scholar 

  4. Goh, E.B. et al. Transcriptional modulation of bacterial gene expression by subinhibitory concnetrations of antibiotics. Proc. Natl. Acad. Sci. USA 99, 17025–17030 (2002).

    CAS  PubMed  Google Scholar 

  5. Hernandez, M.E., Kappler, A. & Newman, D.K. Phenazines and other redox-active antibiotics promote microbial mineral reduction. Appl. Environ. Microbiol. 70, 921–928 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Banin, E., Vasil, M.L. & Greenberg, E.P. Iron and Pseudomonas aeruginosa biofilm formation. Proc. Natl. Acad. Sci. USA 102, 11076–11081 (2005).

    CAS  PubMed  Google Scholar 

  7. Costerton, J.W., Lewandowski, Z., Caldwell, D.E., Korber, D.R. & Lappinscott, H.M. Microbial biofilms. Annu. Rev. Microbiol. 49, 711–745 (1995).

    CAS  PubMed  Google Scholar 

  8. Kolter, R., Siegele, D.A. & Tormo, A. The stationary phase of the bacterial life cycle. Annu. Rev. Microbiol. 47, 855–874 (1993).

    CAS  PubMed  Google Scholar 

  9. Laursen, J.B. & Nielsen, J. Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem. Rev. 104, 1663–1686 (2004).

    CAS  PubMed  Google Scholar 

  10. Kerr, J.R. Phenazine pigments: antibiotics and virulence factors. Infect. Dis. Rev. 2, 184–194 (2000).

    Google Scholar 

  11. Chin-A-Woeng, T.F.C. et al. Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. Mol. Plant Microbe Interact. 11, 1069–1077 (1998).

    CAS  Google Scholar 

  12. Chin-A-Woeng, T.F.C., Bloemberg, G.V. & Lugtenberg, B.J.J. Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol. 157, 503–523 (2003).

    CAS  Google Scholar 

  13. O'Malley, Y.Q. et al. The Pseudomonas secretory product pyocyanin inhibits catalase activity in human lung epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 285, L1077–L1086 (2003).

    CAS  PubMed  Google Scholar 

  14. Lau, G.W., Hassett, D.J., Ran, H. & Kong, F. The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol. Med. 10, 599–606 (2004).

    CAS  PubMed  Google Scholar 

  15. Look, D.C. et al. Pyocyanin and its precursor phenazine-1-carboxylic acid increase IL-8 and intercellular adhesion molecule-1 expression in human airway epithelial cells by oxidant-dependent mechanisms. J. Immunol. 175, 4017–4023 (2005).

    CAS  PubMed  Google Scholar 

  16. Juhas, M., Eberl, L. & Tummler, B. Quorum sensing: the power of cooperation in the world of Pseudomonas. Environ. Microbiol. 7, 459–471 (2005).

    CAS  PubMed  Google Scholar 

  17. Hall-Stoodley, L. Bacterial biofilms: From the natural environment to infectious diseases. Nat. Rev. Microbiol. 2, 95–108 (2004).

    CAS  PubMed  Google Scholar 

  18. Lazdunski, A.M., Ventre, I. & Sturgis, J.N. Regulatory circuits and communication in Gram-negative bacteria. Nat. Rev. Microbiol. 2, 581–592 (2004).

    CAS  PubMed  Google Scholar 

  19. Armstrong, A.V. & Stewart-Tull, D.E.S. The site of activity of extracellular products of Pseudomonas aeruginosa in the electron-transport chain in mammalian cell respiration. J. Med. Microbiol. 4, 263–270 (1971).

    CAS  PubMed  Google Scholar 

  20. Ritz, D. & Beckwith, J. Roles of thiol-redox pathways in bacteria. Annu. Rev. Microbiol. 55, 21–48 (2001).

    CAS  PubMed  Google Scholar 

  21. Villavicencio, R.T. The history of blue pus. J. Am. Coll. Surg. 187, 212–216 (1998).

    CAS  PubMed  Google Scholar 

  22. Turner, J.M. & Messenger, A.J. Occurrence, biochemistry and physiology of phenazine pigment production. Adv. Microb. Physiol. 27, 211–275 (1986).

    CAS  PubMed  Google Scholar 

  23. Pirnay, J.P. et al. Global Pseudomonas aeruginosa biodiversity as reflected in a Belgian river. Environ. Microbiol. 7, 969–980 (2005).

    CAS  PubMed  Google Scholar 

  24. Mavrodi, D.V. et al. Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J. Bacteriol. 183, 6454–6465 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Delaney, S.M., Mavrodi, D.V., Bonsall, R.F. & Thomashow, L.S. phzO, a gene for biosynthesis of 2-hydroxylated phenazine compounds in Pseudomonas aureofaciens 30–84. J. Bacteriol. 183, 318–327 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chin-A-Woeng, T.F.C., Thomas-Oates, J.E., Lugtenberg, B.J.J. & Bloemberg, G.V. Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1- carboxylic acid-producing Pseudomonas spp. strains. Mol. Plant Microbe Interact. 14, 1006–1015 (2001).

    CAS  PubMed  Google Scholar 

  27. Beifuss, U. & Tietze, M. Methanophenazine and other natural biologically active phenazines. Top. Curr. Chem. 244, 77–113 (2005).

    CAS  Google Scholar 

  28. Rao, Y.M. & Sureshkumar, G.K. Oxidative-stress-induced production of pyocyanin by Xanthomonas campestris and its effect on the indicator target organism, Escherichia coli. J. Ind. Microbiol. Biotechnol. 25, 266–272 (2000).

    CAS  Google Scholar 

  29. Lau, G.W., Hassett, D.J. & Britigan, B.E. Modulation of lung epithelial functions by Pseudomonas aeruginosa. Trends Microbiol. 13, 389–397 (2005).

    CAS  PubMed  Google Scholar 

  30. Wilson, R. et al. Measurement of Pseudomonas aeruginosa phenazine pigments in sputum and assessment of their contribution to sputum sol toxicity for respiratory epithelium. Infect. Immun. 56, 2515–2517 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lau, G.W., Ran, H., Kong, F., Hassett, D.J. & Mavrodi, D. Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice. Infect. Immun. 72, 4275–4278 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Finnan, S. Genome diversity of Pseudomonas aeruginosa isolates from cystic fibrosis patients and the hospital environment. J. Clin. Microbiol. 42, 5783–5792 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lau, G.W., Ran, H., Kong, F., Hassett, D.J. & Mavrodi, D. Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice. Infect. Immun. 72, 4275–4278 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. O'Malley, Y.Q., Reszka, K.J., Spitz, D.R., Denning, G.M. & Britigan, B.E. Pseudomonas aeruginosa pyocyanin directly oxidizes glutathione and decreases its levels in airway epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 287, L94–103 (2004).

    CAS  PubMed  Google Scholar 

  35. Hassan, H.M. & Fridovich, I. Mechanism of the antibiotic action pyocyanine. J. Bacteriol. 141, 156–163 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Britigan, B.E., Railsback, M.A. & Cox, C.D. The Pseudomonas aeruginosa secretory product pyocyanin inactivates alpha(1) protease inhibitor: implications for the pathogenesis of cystic fibrosis lung disease. Infect. Immun. 67, 1207–1212 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hassett, D.J., Charniga, L., Bean, K., Ohman, D.E. & Cohen, M.S. Response of Pseudomonas aeruginosa to pyocyanin: mechanisms of resistance, antioxidant defenses, and demonstration of a manganese-cofactored superoxide dismutase. Infect. Immun. 60, 328–336 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Britigan, B.E. et al. Interaction of the Pseudomonas aeruginosa secretory products pyocyanin and pyochelin generates hydroxyl radical and causes synergistic damage to endothelial cells: implications for Pseudomonas associated tissue injury. J. Clin. Invest. 90, 2187–2196 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hassan, H.M. & Fridovich, I. Intracellular production of superoxide radical and of hydrogen-peroxide by redox active compounds. Arch. Biochem. Biophys. 196, 385–395 (1979).

    CAS  PubMed  Google Scholar 

  40. Ohman, D.E. Utilization of human respiratory secretions by mucoid Pseudomonas aerugionsa of cystic fibrosis origin. Infect. Immun. 37, 662–669 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Palmer, K.L. Cystic fibrosis sputum supports growth and cues key aspects of Pseudomonas aeruginosa physiology. J. Bacteriol. 187, 5267–5277 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Baron, S.S. & Rowe, J.J. Antibiotic action of pyocyanin. Antimicrob. Agents Chemother. 20, 814–820 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Mazzola, M., Cook, R.J., Thomashow, L.S., Weller, D.M. & Pierson, L.S., III. Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl. Environ. Microbiol. 58, 2616–2624 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bankhead, S.B., Landa, B.B., Lutton, E., Weller, D.M. & Gardener, B.B.M. Minimal changes in rhizobacterial population structure following root colonization by wild type and transgenic biocontrol strains. FEMS Microbiol. Ecol. 49, 307–318 (2004).

    CAS  PubMed  Google Scholar 

  45. Vandenende, C.S., Vlasschaert, M. & Seah, S.Y.K. Functional characterization of an aminotransferase required for pyoverdine siderophore biosynthesis in Pseudomonas aeruginosa PAO1. J. Bacteriol. 186, 5596–5602 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Dewick, P.M. The biosynthesis of shikimate metabolites. Nat. Prod. Rep. 1, 451–469 (1984).

    CAS  PubMed  Google Scholar 

  47. McDonald, M., Mavrodi, D.V., Thomashow, L.S. & Floss, H.G. Phenazine biosynthesis in Pseudomonas fluorescens: branchpoint from the primary shikimate biosynthetic pathway and role of phenazine-1,6-dicarboxylic acid. J. Am. Chem. Soc. 123, 9459–9460 (2001).

    CAS  PubMed  Google Scholar 

  48. Mavrodi, D.V. et al. A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2–79. J. Bacteriol. 180, 2541–2548 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Whiteley, M., Lee, K.M. & Greenberg, E.P. Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 96, 13904–13909 (1999).

    CAS  PubMed  Google Scholar 

  50. Deziel, E. et al. Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc. Natl. Acad. Sci. USA 101, 1339–1344 (2004).

    CAS  PubMed  Google Scholar 

  51. Pierson, L.S., III, Keppenne, V.D. & Wood, D.W. Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30–84 is regulated by PhzR in response to cell density. J. Bacteriol. 176, 3966–3974 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Chin-A-Woeng, T.F. et al. Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium. Mol. Plant Microbe Interact. 14, 969–979 (2001).

    CAS  PubMed  Google Scholar 

  53. Khan, S.R. et al. Activation of the phz operon of Pseudomonas fluorescens 2–79 requires the LuxR homolog PhzR, N-(3-OH-hexanoyl)-L-homoserine lactone produced by the LuxI homolog PhzI, and a cis-acting phz box. J. Bacteriol. 187, 6517–6527 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. van Rij, E.T., Wesselink, M., Chin, A.W.T.F., Bloemberg, G.V. & Lugtenberg, B.J. Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391. Mol. Plant Microbe Interact. 17, 557–566 (2004).

    CAS  PubMed  Google Scholar 

  55. Kim, E.J., Wang, W., Deckwer, W.D. & Zeng, A.P. Expression of the quorum-sensing regulatory protein LasR is strongly affected by iron and oxygen concentrations in cultures of Pseudomonas aeruginosa irrespective of cell density. Microbiology 151, 1127–1138 (2005).

    CAS  PubMed  Google Scholar 

  56. Chancey, S.T. Two-component transcriptional regulation of N-acyl-homoserine lactone production in Pseudomonas aureofaciens. Appl. Environ. Microbiol. 65, 2294–2299 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Chancey, S.T., Wood, D.W., Pierson, E.A. & Pierson, L.S., III. Survival of GacS/GacA mutants of the biological control bacterium Pseudomonas aureofaciens 30–84 in the wheat rhizosphere. Appl. Environ. Microbiol. 68, 3308–3314 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Whistler, C.A. & Pierson, L.S., III. Repression of phenazine antibiotic production in Pseudomonas aureofaciens strain 30–84 by RpeA. J. Bacteriol. 185, 3718–3725 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Chin-A-Woeng. T.F., van den Broek, D., Lugtenberg, B.J. & Bloemberg, G.V. The Pseudomonas chlororaphis PCL1391 sigma regulator psrA represses the production of the antifungal metabolite phenazine-1-carboxamide. Mol. Plant Microbe Interact. 18, 244–253 (2005).

    CAS  PubMed  Google Scholar 

  60. Cases, I. Promoters in the environment: transcriptional regulation in its natural context. Nat. Rev. Microbiol. 3, 105–118 (2005).

    CAS  PubMed  Google Scholar 

  61. Hooi, D.S.W. Differential immune modulatory activity of Pseudomonas aeruginosa quorum-sensing signal molecules. Infect. Immun. 72, 6463–6470 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Pesci, E.C. et al. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 96, 11229–11234 (1999).

    CAS  PubMed  Google Scholar 

  63. Kaufmann, G.F. Revisiting quorum sensing: discovery of additional chemical and biological functions for 3-oxo-N-acylhomoserine lactones. Proc. Natl. Acad. Sci. USA 102, 309–314 (2005).

    CAS  PubMed  Google Scholar 

  64. Oliphant, C.M. Quinolones: a comprehensive review. Am. Fam. Physician 65, 455–464 (2002).

    PubMed  Google Scholar 

  65. Friedheim, E. & Michaelis, L. Potentiometric study of pyocyanine. J. Biol. Chem. 91, 355–368 (1931).

    CAS  Google Scholar 

  66. Hernandez, M.E. & Newman, D.K. Extracellular electron transfer. Cell. Mol. Life Sci. 58, 1562–1571 (2001).

    CAS  PubMed  Google Scholar 

  67. Friedheim, E.A.H. Pyocyanine, an accessory respiratory pigment. J. Exp. Med. 54, 207–221 (1931).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Stewart-Tull, D.E.S. & Armstrong, A.V. The effect of 1-hydroxyphenazine and pyocyanin from Pseudomonas aeruginosa on mammalian cell respiration. J. Med. Microbiol. 5, 67–73 (1972).

    CAS  PubMed  Google Scholar 

  69. Muller, M. Scavenging of neutrophil-derived superoxide anion by 1-hydroxyphenazine, a phenazine derivative associated with chronic Pseudomonas aeruginosa infection: relevance to cystic fibrosis. Biochim. Biophys. Acta 1272, 185–189 (1995).

    PubMed  Google Scholar 

  70. Learoyd, S.A., Kroll, R.G. & Thurston, C.F. An investigation of dye reduction by food-borne bacteria. J. Appl. Bacteriol. 72, 479–485 (1992).

    CAS  PubMed  Google Scholar 

  71. McKinlay, J.B. & Zeikus, J.G. Extracellular iron reduction is mediated in part by neutral red and hydrogenase in Escherichia coli. Appl. Environ. Microbiol. 70, 3467–3474 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Deppenmeier, U. The membrane-bound electron transport system of Methanosarcina species. J. Bioenerg. Biomembr. 36, 55–64 (2004).

    CAS  PubMed  Google Scholar 

  73. Beifuss, U., Tietze, M., Baumer, S. & U., D. Methanophenazine: structure, total synthesis, and function of a new cofactor from methanogenic Archaea. Angew. Chem. Int. Ed. Engl. 39, 2470–2473 (2000).

    CAS  PubMed  Google Scholar 

  74. Deppenmeier, U. The unique biochemistry of methanogenesis. Prog. Nucleic Acid Res. Mol. Biol. 71, 223–283 (2002).

    CAS  PubMed  Google Scholar 

  75. Abken, H.J. et al. Isolation and characterization of methanophenazine and function of phenazines in membrane-bound electron transport of Methanosarcina mazei Gol. J. Bacteriol. 180, 2027–2032 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Fu, Y.C., Zhang, T.C. & Bishop, P.L. Determination of effective oxygen diffusivity in biofilms grown in a completely mixed biodrum reactor. Water Sci. Tech. 29, 455–462 (1994).

    CAS  Google Scholar 

  77. Stewart, P.S. Diffusion in biofilms. J. Bacteriol. 185, 1485–1491 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. de Graef, M.R., Alexeeva, S., Snoep, J.L. & Teixeira de Mattos, M.J. The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli. J. Bacteriol. 181, 2351–2357 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Fultz, M.L. & Durst, R.A. Mediator compounds for the electrochemical study of biological redox systems: a compilation. Anal. Chim. Acta 140, 1–18 (1982).

    CAS  Google Scholar 

  80. Bond, D.R., Holmes, D.E., Tender, L.M. & Lovley, D.R. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295, 483–485 (2002).

    CAS  PubMed  Google Scholar 

  81. Kim, B.H. et al. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl. Microbiol. Biotechnol. 63, 672–681 (2004).

    CAS  PubMed  Google Scholar 

  82. Lies, D.P. et al. Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms. Appl. Environ. Microbiol. 71, 4414–4426 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Rabaey, K., Boon, N., Siciliano, S.D., Verhaege, M. & Verstraete, W. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol. 70, 5373–5382 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Rabaey, K., Boon, N., Hofte, M. & Verstraete, W. Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Tech. 39, 3401–3408 (2005).

    CAS  Google Scholar 

  85. Cox, C.D. Role of pyocyanin in the acquisition of iron from transferrin. Infect. Immun. 52, 263–270 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. King, E.O. Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med. 44, 301–307 (1954).

    CAS  PubMed  Google Scholar 

  87. Fux, C.A. Survival strategies of infectious biofilms. Trends Microbiol. 13, 34–40 (2005).

    CAS  PubMed  Google Scholar 

  88. Waite, R.D. Transcriptome analysis of Pseudomonas aeruginosa growth: comparison of gene expression in planktonic cultures and developing and mature biofilms. J. Bacteriol. 187, 6571–6576 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Handelsman, J. & Wackett, L.P. Ecology and industrial microbiology: microbial diversity–sustaining the Earth and industry. Curr. Opin. Microbiol. 5, 237–239 (2002).

    PubMed  Google Scholar 

  90. Clark, W.M. Azines. in Oxidation-Reduction Potentials of Organic Systems 412–419 (Williams & Wilkins Company, Baltimore, 1960).

    Google Scholar 

  91. Meylan, W.M. & Howard, P.H. Atom/fragment contribution method for estimating octanol-water partition coefficients. J. Pharm. Sci. 84, 83–92 (1995).

    CAS  PubMed  Google Scholar 

  92. Mann, S. [Melanin-forming strains of Pseudomonas aeruginosa]. Arch. Mikrobiol. 65, 359–379 (1969).

    CAS  PubMed  Google Scholar 

  93. Byng, G.S., Eustice, D.C. & Jensen, R.A. Biosynthesis of phenazine pigments in mutant and wild-type cultures of Pseudomonas aeruginosa. J. Bacteriol. 138, 846–852 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Wade, D.S. et al. Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. J. Bacteriol. 187, 4372–4380 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. White, D. The Physiology and Biochemistry of Prokaryotes (Oxford University Press, New York, 2000).

    Google Scholar 

  96. Williamson, N.R. et al. Biosynthesis of the red antibiotic, prodigiosin, in Serratia: identification of a novel 2-methyl-3-n-amyl-pyrrole (MAP) assembly pathway, definition of the terminal condensing enzyme, and implications for undecylprodigiosin biosynthesis in Streptomyces. Mol. Microbiol. 56, 971–989 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by an NIH training grant (A.-P.-W.) and a postdoctoral EMBO fellowship (L.E.P.D.) administered by the California Institute of Technology, the Howard Hughes Medical Institute (D.K.N.) and the Packard Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dianne K Newman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Price-Whelan, A., Dietrich, L. & Newman, D. Rethinking 'secondary' metabolism: physiological roles for phenazine antibiotics. Nat Chem Biol 2, 71–78 (2006). https://doi.org/10.1038/nchembio764

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio764

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing